MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcralg Structured version   Unicode version

Theorem sbcralg 3235
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcralg  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    V( x, y)

Proof of Theorem sbcralg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3164 . 2  |-  ( z  =  A  ->  ( [ z  /  x ] A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph ) )
2 dfsbcq2 3164 . . 3  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32ralbidv 2725 . 2  |-  ( z  =  A  ->  ( A. y  e.  B  [ z  /  x ] ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
4 nfcv 2572 . . . 4  |-  F/_ x B
5 nfs1v 2182 . . . 4  |-  F/ x [ z  /  x ] ph
64, 5nfral 2759 . . 3  |-  F/ x A. y  e.  B  [ z  /  x ] ph
7 sbequ12 1944 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
87ralbidv 2725 . . 3  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph ) )
96, 8sbie 2149 . 2  |-  ( [ z  /  x ] A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph )
101, 3, 9vtoclbg 3012 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652   [wsb 1658    e. wcel 1725   A.wral 2705   [.wsbc 3161
This theorem is referenced by:  r19.12sn  3872  rspsbc2  28618  rspsbc2VD  28967  cdlemkid3N  31730  cdlemkid4  31731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-v 2958  df-sbc 3162
  Copyright terms: Public domain W3C validator