MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcralt Structured version   Unicode version

Theorem sbcralt 3235
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
Assertion
Ref Expression
sbcralt  |-  ( ( A  e.  V  /\  F/_ y A )  -> 
( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Distinct variable groups:    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x, y)    B( y)    V( x, y)

Proof of Theorem sbcralt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcco 3185 . 2  |-  ( [. A  /  z ]. [. z  /  x ]. A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph )
2 simpl 445 . . 3  |-  ( ( A  e.  V  /\  F/_ y A )  ->  A  e.  V )
3 sbsbc 3167 . . . . 5  |-  ( [ z  /  x ] A. y  e.  B  ph  <->  [. z  /  x ]. A. y  e.  B  ph )
4 nfcv 2574 . . . . . . 7  |-  F/_ x B
5 nfs1v 2184 . . . . . . 7  |-  F/ x [ z  /  x ] ph
64, 5nfral 2761 . . . . . 6  |-  F/ x A. y  e.  B  [ z  /  x ] ph
7 sbequ12 1945 . . . . . . 7  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
87ralbidv 2727 . . . . . 6  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph ) )
96, 8sbie 2152 . . . . 5  |-  ( [ z  /  x ] A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph )
103, 9bitr3i 244 . . . 4  |-  ( [. z  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [ z  /  x ] ph )
11 nfnfc1 2577 . . . . . . 7  |-  F/ y
F/_ y A
12 nfcvd 2575 . . . . . . . 8  |-  ( F/_ y A  ->  F/_ y
z )
13 id 21 . . . . . . . 8  |-  ( F/_ y A  ->  F/_ y A )
1412, 13nfeqd 2588 . . . . . . 7  |-  ( F/_ y A  ->  F/ y  z  =  A )
1511, 14nfan1 1846 . . . . . 6  |-  F/ y ( F/_ y A  /\  z  =  A )
16 dfsbcq2 3166 . . . . . . 7  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
1716adantl 454 . . . . . 6  |-  ( (
F/_ y A  /\  z  =  A )  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
1815, 17ralbid 2725 . . . . 5  |-  ( (
F/_ y A  /\  z  =  A )  ->  ( A. y  e.  B  [ z  /  x ] ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
1918adantll 696 . . . 4  |-  ( ( ( A  e.  V  /\  F/_ y A )  /\  z  =  A )  ->  ( A. y  e.  B  [
z  /  x ] ph 
<-> 
A. y  e.  B  [. A  /  x ]. ph ) )
2010, 19syl5bb 250 . . 3  |-  ( ( ( A  e.  V  /\  F/_ y A )  /\  z  =  A )  ->  ( [. z  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
212, 20sbcied 3199 . 2  |-  ( ( A  e.  V  /\  F/_ y A )  -> 
( [. A  /  z ]. [. z  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
221, 21syl5bbr 252 1  |-  ( ( A  e.  V  /\  F/_ y A )  -> 
( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653   [wsb 1659    e. wcel 1726   F/_wnfc 2561   A.wral 2707   [.wsbc 3163
This theorem is referenced by:  sbcrext  3236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-v 2960  df-sbc 3164
  Copyright terms: Public domain W3C validator