Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcrot3 Unicode version

Theorem sbcrot3 26868
Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
sbcrot3  |-  ( [. A  /  a ]. [. B  /  b ]. [. C  /  c ]. ph  <->  [. B  / 
b ]. [. C  / 
c ]. [. A  / 
a ]. ph )
Distinct variable groups:    A, b    A, c    B, a    C, a   
a, c    a, b
Allowed substitution hints:    ph( a, b, c)    A( a)    B( b, c)    C( b, c)

Proof of Theorem sbcrot3
StepHypRef Expression
1 sbccom 3062 . 2  |-  ( [. A  /  a ]. [. B  /  b ]. [. C  /  c ]. ph  <->  [. B  / 
b ]. [. A  / 
a ]. [. C  / 
c ]. ph )
2 sbccom 3062 . . 3  |-  ( [. A  /  a ]. [. C  /  c ]. ph  <->  [. C  / 
c ]. [. A  / 
a ]. ph )
32sbcbii 3046 . 2  |-  ( [. B  /  b ]. [. A  /  a ]. [. C  /  c ]. ph  <->  [. B  / 
b ]. [. C  / 
c ]. [. A  / 
a ]. ph )
41, 3bitri 240 1  |-  ( [. A  /  a ]. [. B  /  b ]. [. C  /  c ]. ph  <->  [. B  / 
b ]. [. C  / 
c ]. [. A  / 
a ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   [.wsbc 2991
This theorem is referenced by:  sbcrot5  26869  sbcrot3gOLD  26871  sbcrot3OLD  26872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator