Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcrot3gOLD Structured version   Unicode version

Theorem sbcrot3gOLD 26841
Description: Rotate a sequence of three explicit substitutions, closed theorem. (Contributed by Stefan O'Rear, 11-Oct-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbcrot3gOLD  |-  ( ( A  e.  D  /\  B  e.  E  /\  A. b  C  e.  F
)  ->  ( [. A  /  a ]. [. B  /  b ]. [. C  /  c ]. ph  <->  [. B  / 
b ]. [. C  / 
c ]. [. A  / 
a ]. ph ) )
Distinct variable groups:    A, b    A, c    B, a    C, a   
a, c    a, b
Allowed substitution hints:    ph( a, b, c)    A( a)    B( b, c)    C( b, c)    D( a, b, c)    E( a, b, c)    F( a, b, c)

Proof of Theorem sbcrot3gOLD
StepHypRef Expression
1 sbcrot3 26838 . 2  |-  ( [. A  /  a ]. [. B  /  b ]. [. C  /  c ]. ph  <->  [. B  / 
b ]. [. C  / 
c ]. [. A  / 
a ]. ph )
21a1i 11 1  |-  ( ( A  e.  D  /\  B  e.  E  /\  A. b  C  e.  F
)  ->  ( [. A  /  a ]. [. B  /  b ]. [. C  /  c ]. ph  <->  [. B  / 
b ]. [. C  / 
c ]. [. A  / 
a ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936   A.wal 1549    e. wcel 1725   [.wsbc 3153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154
  Copyright terms: Public domain W3C validator