Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssOLD Structured version   Unicode version

Theorem sbcssOLD 28564
Description: Distribute proper substitution through a subclass relation. This theorem was automatically derived from sbcssVD 28932. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssOLD  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )

Proof of Theorem sbcssOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3329 . . . 4  |-  ( C 
C_  D  <->  A. y
( y  e.  C  ->  y  e.  D ) )
21sbcbiiOLD 3209 . . 3  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) ) )
3 sbcalg 3201 . . . 4  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) )
4 sbcimg 3194 . . . . . . 7  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) ) )
5 sbcel2g 3264 . . . . . . . 8  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
6 sbcel2g 3264 . . . . . . . 8  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )
75, 6imbi12d 312 . . . . . . 7  |-  ( A  e.  B  ->  (
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
84, 7bitrd 245 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
98alrimiv 1641 . . . . 5  |-  ( A  e.  B  ->  A. y
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
10 albi 1573 . . . . 5  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( A. y [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
119, 10syl 16 . . . 4  |-  ( A  e.  B  ->  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
123, 11bitrd 245 . . 3  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
132, 12bitrd 245 . 2  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
14 dfss2 3329 . 2  |-  ( [_ A  /  x ]_ C  C_ 
[_ A  /  x ]_ D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
1513, 14syl6bbr 255 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549    e. wcel 1725   [.wsbc 3153   [_csb 3243    C_ wss 3312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154  df-csb 3244  df-in 3319  df-ss 3326
  Copyright terms: Public domain W3C validator