Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssVD Structured version   Unicode version

Theorem sbcssVD 28995
Description: Virtual deduction proof of sbcss 3738. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcss 3738 is sbcssVD 28995 without virtual deductions and was automatically derived from sbcssVD 28995.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) ).
3:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) ).
4:2,3:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D  ) ) ).
5:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
6:4,5:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
7:6:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
8:7:  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
10:8,9:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
11::  |-  ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
110:11:  |-  A. x ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
12:1,110:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
13:10,12:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14::  |-  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A.  y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
15:13,14:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
qed:15:  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_  A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )

Proof of Theorem sbcssVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 28665 . . . . . . . . . 10  |-  (. A  e.  B  ->.  A  e.  B ).
2 sbcel2g 3272 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
31, 2e1_ 28728 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C
) ).
4 sbcel2g 3272 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )
51, 4e1_ 28728 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
) ).
6 imbi12 28603 . . . . . . . . 9  |-  ( (
[. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C )  -> 
( ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
)  ->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
73, 5, 6e11 28789 . . . . . . . 8  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
8 sbcimg 3202 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) ) )
91, 8e1_ 28728 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
10 bibi1 318 . . . . . . . . 9  |-  ( (
[. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) )  ->  (
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1110biimprcd 217 . . . . . . . 8  |-  ( ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) )  -> 
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
127, 9, 11e11 28789 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
1312gen11 28717 . . . . . 6  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14 albi 1573 . . . . . 6  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( A. y [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
1513, 14e1_ 28728 . . . . 5  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
16 sbcalg 3209 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) )
171, 16e1_ 28728 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
18 bibi1 318 . . . . . 6  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1918biimprcd 217 . . . . 5  |-  ( ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2015, 17, 19e11 28789 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
21 dfss2 3337 . . . . . 6  |-  ( C 
C_  D  <->  A. y
( y  e.  C  ->  y  e.  D ) )
2221ax-gen 1555 . . . . 5  |-  A. x
( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
23 sbcbi 28624 . . . . 5  |-  ( A  e.  B  ->  ( A. x ( C  C_  D 
<-> 
A. y ( y  e.  C  ->  y  e.  D ) )  -> 
( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) ) ) )
241, 22, 23e10 28795 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
25 bibi1 318 . . . . 5  |-  ( (
[. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
2625biimprcd 217 . . . 4  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2720, 24, 26e11 28789 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
28 dfss2 3337 . . 3  |-  ( [_ A  /  x ]_ C  C_ 
[_ A  /  x ]_ D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
29 biantr 898 . . . 4  |-  ( ( ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  /\  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
3029ex 424 . . 3  |-  ( (
[. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ) )
3127, 28, 30e10 28795 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
3231in1 28662 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549    e. wcel 1725   [.wsbc 3161   [_csb 3251    C_ wss 3320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-sbc 3162  df-csb 3252  df-in 3327  df-ss 3334  df-vd1 28661
  Copyright terms: Public domain W3C validator