Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssVD Unicode version

Theorem sbcssVD 28659
Description: Virtual deduction proof of sbcss 3564. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcss 3564 is sbcssVD 28659 without virtual deductions and was automatically derived from sbcssVD 28659.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) ).
3:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) ).
4:2,3:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D  ) ) ).
5:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
6:4,5:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
7:6:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
8:7:  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
10:8,9:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
11::  |-  ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
110:11:  |-  A. x ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
12:1,110:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
13:10,12:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14::  |-  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A.  y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
15:13,14:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
qed:15:  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_  A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )

Proof of Theorem sbcssVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 28342 . . . . . . . . . 10  |-  (. A  e.  B  ->.  A  e.  B ).
2 sbcel2g 3102 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
31, 2e1_ 28399 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C
) ).
4 sbcel2g 3102 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )
51, 4e1_ 28399 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
) ).
6 imbi12 28282 . . . . . . . . 9  |-  ( (
[. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C )  -> 
( ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
)  ->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
73, 5, 6e11 28460 . . . . . . . 8  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
8 sbcimg 3032 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) ) )
91, 8e1_ 28399 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
10 bibi1 317 . . . . . . . . 9  |-  ( (
[. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) )  ->  (
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1110biimprcd 216 . . . . . . . 8  |-  ( ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) )  -> 
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
127, 9, 11e11 28460 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
1312gen11 28388 . . . . . 6  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14 albi 1551 . . . . . 6  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( A. y [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
1513, 14e1_ 28399 . . . . 5  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
16 sbcalg 3039 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) )
171, 16e1_ 28399 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
18 bibi1 317 . . . . . 6  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1918biimprcd 216 . . . . 5  |-  ( ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2015, 17, 19e11 28460 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
21 dfss2 3169 . . . . . 6  |-  ( C 
C_  D  <->  A. y
( y  e.  C  ->  y  e.  D ) )
2221ax-gen 1533 . . . . 5  |-  A. x
( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
23 sbcbi 28303 . . . . 5  |-  ( A  e.  B  ->  ( A. x ( C  C_  D 
<-> 
A. y ( y  e.  C  ->  y  e.  D ) )  -> 
( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) ) ) )
241, 22, 23e10 28467 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
25 bibi1 317 . . . . 5  |-  ( (
[. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
2625biimprcd 216 . . . 4  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2720, 24, 26e11 28460 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
28 dfss2 3169 . . 3  |-  ( [_ A  /  x ]_ C  C_ 
[_ A  /  x ]_ D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
29 biantr 897 . . . 4  |-  ( ( ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  /\  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
3029ex 423 . . 3  |-  ( (
[. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ) )
3127, 28, 30e10 28467 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
3231in1 28339 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    e. wcel 1684   [.wsbc 2991   [_csb 3081    C_ wss 3152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082  df-in 3159  df-ss 3166  df-vd1 28338
  Copyright terms: Public domain W3C validator