MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcth Structured version   Unicode version

Theorem sbcth 3177
Description: A substitution into a theorem remains true (when  A is a set). (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcth.1  |-  ph
Assertion
Ref Expression
sbcth  |-  ( A  e.  V  ->  [. A  /  x ]. ph )

Proof of Theorem sbcth
StepHypRef Expression
1 sbcth.1 . . 3  |-  ph
21ax-gen 1556 . 2  |-  A. x ph
3 spsbc 3175 . 2  |-  ( A  e.  V  ->  ( A. x ph  ->  [. A  /  x ]. ph )
)
42, 3mpi 17 1  |-  ( A  e.  V  ->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550    e. wcel 1726   [.wsbc 3163
This theorem is referenced by:  rabrsn  3876  tfinds2  4845  iota4an  5439  wunnat  14155  catcfuccl  14266  dprdval  15563  cdlemk35s  31796  cdlemk39s  31798  cdlemk42  31800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-v 2960  df-sbc 3164
  Copyright terms: Public domain W3C validator