Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcth2 Structured version   Unicode version

Theorem sbcth2 3244
 Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
sbcth2.1
Assertion
Ref Expression
sbcth2
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem sbcth2
StepHypRef Expression
1 sbcth2.1 . . 3
21rgen 2771 . 2
3 rspsbc 3239 . 2
42, 3mpi 17 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1725  wral 2705  wsbc 3161 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-v 2958  df-sbc 3162
 Copyright terms: Public domain W3C validator