Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbeqal2i Structured version   Unicode version

Theorem sbeqal2i 27567
Description: If  x  =  y implies  x  =  z, then we can infer  z  =  y. (Contributed by Andrew Salmon, 3-Jun-2011.)
Hypothesis
Ref Expression
sbeqal1i.1  |-  ( x  =  y  ->  x  =  z )
Assertion
Ref Expression
sbeqal2i  |-  z  =  y
Distinct variable group:    x, z

Proof of Theorem sbeqal2i
StepHypRef Expression
1 sbeqal1i.1 . . 3  |-  ( x  =  y  ->  x  =  z )
21sbeqal1i 27566 . 2  |-  y  =  z
32eqcomi 2439 1  |-  z  =  y
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-cleq 2428
  Copyright terms: Public domain W3C validator