MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ2 Unicode version

Theorem sbequ2 1631
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ2  |-  ( x  =  y  ->  ( [ y  /  x ] ph  ->  ph ) )

Proof of Theorem sbequ2
StepHypRef Expression
1 df-sb 1630 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
2 simpl 443 . . 3  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  ( x  =  y  ->  ph )
)
32com12 27 . 2  |-  ( x  =  y  ->  (
( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  ph ) )
41, 3syl5bi 208 1  |-  ( x  =  y  ->  ( [ y  /  x ] ph  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528   [wsb 1629
This theorem is referenced by:  stdpc7  1858  sbequ12  1860  dfsb2  1995  sbequi  1999  sbn  2002  sbi1  2003  mo  2165  mopick  2205  2pm13.193  28318  2pm13.193VD  28679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-sb 1630
  Copyright terms: Public domain W3C validator