MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbex Unicode version

Theorem sbex 2067
Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.)
Assertion
Ref Expression
sbex  |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
Distinct variable groups:    x, y    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbex
StepHypRef Expression
1 sbn 2002 . . 3  |-  ( [ z  /  y ]  -.  A. x  -.  ph  <->  -. 
[ z  /  y ] A. x  -.  ph )
2 sbal 2066 . . . 4  |-  ( [ z  /  y ] A. x  -.  ph  <->  A. x [ z  / 
y ]  -.  ph )
3 sbn 2002 . . . . 5  |-  ( [ z  /  y ]  -.  ph  <->  -.  [ z  /  y ] ph )
43albii 1553 . . . 4  |-  ( A. x [ z  /  y ]  -.  ph  <->  A. x  -.  [
z  /  y ]
ph )
52, 4bitri 240 . . 3  |-  ( [ z  /  y ] A. x  -.  ph  <->  A. x  -.  [ z  /  y ] ph )
61, 5xchbinx 301 . 2  |-  ( [ z  /  y ]  -.  A. x  -.  ph  <->  -. 
A. x  -.  [
z  /  y ]
ph )
7 df-ex 1529 . . 3  |-  ( E. x ph  <->  -.  A. x  -.  ph )
87sbbii 1634 . 2  |-  ( [ z  /  y ] E. x ph  <->  [ z  /  y ]  -.  A. x  -.  ph )
9 df-ex 1529 . 2  |-  ( E. x [ z  / 
y ] ph  <->  -.  A. x  -.  [ z  /  y ] ph )
106, 8, 93bitr4i 268 1  |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176   A.wal 1527   E.wex 1528   [wsb 1629
This theorem is referenced by:  sbmo  2173  sbabel  2445  sbcex2  3040  sbcexg  3041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630
  Copyright terms: Public domain W3C validator