Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbi1NEW7 Structured version   Unicode version

Theorem sbi1NEW7 29500
Description: Removal of implication from substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbi1NEW7  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )

Proof of Theorem sbi1NEW7
StepHypRef Expression
1 sbequ2 1660 . . . . 5  |-  ( x  =  y  ->  ( [ y  /  x ] ph  ->  ph ) )
2 sbequ2 1660 . . . . 5  |-  ( x  =  y  ->  ( [ y  /  x ] ( ph  ->  ps )  ->  ( ph  ->  ps ) ) )
31, 2syl5d 64 . . . 4  |-  ( x  =  y  ->  ( [ y  /  x ] ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  ps ) ) )
4 sbequ1 1943 . . . 4  |-  ( x  =  y  ->  ( ps  ->  [ y  /  x ] ps ) )
53, 4syl6d 66 . . 3  |-  ( x  =  y  ->  ( [ y  /  x ] ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) ) )
65sps 1770 . 2  |-  ( A. x  x  =  y  ->  ( [ y  /  x ] ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) ) )
7 sb4NEW7 29489 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
8 sb4NEW7 29489 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ]
( ph  ->  ps )  ->  A. x ( x  =  y  ->  ( ph  ->  ps ) ) ) )
9 ax-2 6 . . . . . 6  |-  ( ( x  =  y  -> 
( ph  ->  ps )
)  ->  ( (
x  =  y  ->  ph )  ->  ( x  =  y  ->  ps ) ) )
109al2imi 1570 . . . . 5  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ( x  =  y  ->  ph )  ->  A. x
( x  =  y  ->  ps ) ) )
11 sb2NEW7 29474 . . . . 5  |-  ( A. x ( x  =  y  ->  ps )  ->  [ y  /  x ] ps )
1210, 11syl6 31 . . . 4  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ps ) )
138, 12syl6 31 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ]
( ph  ->  ps )  ->  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ps ) ) )
147, 13syl5d 64 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) ) )
156, 14pm2.61i 158 1  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1549   [wsb 1658
This theorem is referenced by:  sbimNEW7  29502  spsbimNEW7  29509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761  ax-12 1950  ax-7v 29379
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-sb 1659
  Copyright terms: Public domain W3C validator