Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbied Structured version   Unicode version

Theorem sbied 2152
 Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2151). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Jun-2018.)
Hypotheses
Ref Expression
sbied.1
sbied.2
sbied.3
Assertion
Ref Expression
sbied

Proof of Theorem sbied
StepHypRef Expression
1 sbied.1 . . . 4
21sbrim 2138 . . 3
3 sbied.2 . . . . 5
41, 3nfim1 1831 . . . 4
5 sbied.3 . . . . . 6
65com12 30 . . . . 5
76pm5.74d 240 . . . 4
84, 7sbie 2151 . . 3
92, 8bitr3i 244 . 2
109pm5.74ri 239 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wnf 1554  wsb 1659 This theorem is referenced by:  sbieOLD  2154  sbiedv  2155  dvelimdfOLD  2159  sbco2  2163 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660
 Copyright terms: Public domain W3C validator