Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiedv Structured version   Unicode version

Theorem sbiedv 2153
 Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2149). (Contributed by NM, 7-Jan-2017.)
Hypothesis
Ref Expression
sbiedv.1
Assertion
Ref Expression
sbiedv
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   (,)   ()

Proof of Theorem sbiedv
StepHypRef Expression
1 nfv 1629 . 2
2 nfvd 1630 . 2
3 sbiedv.1 . . 3
43ex 424 . 2
51, 2, 4sbied 2150 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wsb 1658 This theorem is referenced by:  2mos  2360  iscatd2  13906  prtlem5  26705 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
 Copyright terms: Public domain W3C validator