MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbim Unicode version

Theorem sbim 2005
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbim  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)

Proof of Theorem sbim
StepHypRef Expression
1 sbi1 2003 . 2  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
2 sbi2 2004 . 2  |-  ( ( [ y  /  x ] ph  ->  [ y  /  x ] ps )  ->  [ y  /  x ] ( ph  ->  ps ) )
31, 2impbii 180 1  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   [wsb 1629
This theorem is referenced by:  sbor  2006  sbrim  2007  sblim  2008  sban  2009  sbbi  2011  sbequ8  2019  sbcimg  3032  mo5f  23143  iuninc  23158  suppss2f  23201  esumpfinvalf  23444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630
  Copyright terms: Public domain W3C validator