MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblbis Unicode version

Theorem sblbis 2025
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
Hypothesis
Ref Expression
sblbis.1  |-  ( [ y  /  x ] ph 
<->  ps )
Assertion
Ref Expression
sblbis  |-  ( [ y  /  x ]
( ch  <->  ph )  <->  ( [
y  /  x ] ch 
<->  ps ) )

Proof of Theorem sblbis
StepHypRef Expression
1 sbbi 2024 . 2  |-  ( [ y  /  x ]
( ch  <->  ph )  <->  ( [
y  /  x ] ch 
<->  [ y  /  x ] ph ) )
2 sblbis.1 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
32bibi2i 304 . 2  |-  ( ( [ y  /  x ] ch  <->  [ y  /  x ] ph )  <->  ( [
y  /  x ] ch 
<->  ps ) )
41, 3bitri 240 1  |-  ( [ y  /  x ]
( ch  <->  ph )  <->  ( [
y  /  x ] ch 
<->  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   [wsb 1638
This theorem is referenced by:  sb8eu  2174  sb8iota  5242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639
  Copyright terms: Public domain W3C validator