MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblim Structured version   Unicode version

Theorem sblim 2138
Description: Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sblim.1  |-  F/ x ps
Assertion
Ref Expression
sblim  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  ps )
)

Proof of Theorem sblim
StepHypRef Expression
1 sbim 2136 . 2  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
)
2 sblim.1 . . . 4  |-  F/ x ps
32sbf 2118 . . 3  |-  ( [ y  /  x ] ps 
<->  ps )
43imbi2i 305 . 2  |-  ( ( [ y  /  x ] ph  ->  [ y  /  x ] ps )  <->  ( [ y  /  x ] ph  ->  ps )
)
51, 4bitri 242 1  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   F/wnf 1554   [wsb 1659
This theorem is referenced by:  sbnf2  2185  sbmo  2312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660
  Copyright terms: Public domain W3C validator