Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbtT Unicode version

Theorem sbtT 28336
Description: A substitution into a theorem remains true. sbt 1973 with the existence of no virtual hypotheses for the hypothesis expressed as the empty virtual hypothesis collection. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbtT.1  |-  (  T. 
->  ph )
Assertion
Ref Expression
sbtT  |-  [ y  /  x ] ph

Proof of Theorem sbtT
StepHypRef Expression
1 sbtT.1 . . 3  |-  (  T. 
->  ph )
21trud 1314 . 2  |-  ph
32sbt 1973 1  |-  [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    T. wtru 1307   [wsb 1629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630
  Copyright terms: Public domain W3C validator