Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbtT Unicode version

Theorem sbtT 28001
Description: A substitution into a theorem remains true. sbt 2067 with the existence of no virtual hypotheses for the hypothesis expressed as the empty virtual hypothesis collection. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbtT.1  |-  (  T. 
->  ph )
Assertion
Ref Expression
sbtT  |-  [ y  /  x ] ph

Proof of Theorem sbtT
StepHypRef Expression
1 sbtT.1 . . 3  |-  (  T. 
->  ph )
21trud 1329 . 2  |-  ph
32sbt 2067 1  |-  [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    T. wtru 1322   [wsb 1655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-11 1753  ax-12 1939
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656
  Copyright terms: Public domain W3C validator