MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem2 Structured version   Unicode version

Theorem sbthlem2 7210
Description: Lemma for sbth 7219. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem2  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
2 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem1 7209 . . . . . . . 8  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
4 imass2 5232 . . . . . . . 8  |-  ( U. D  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( f " U. D )  C_  ( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
5 sscon 3473 . . . . . . . 8  |-  ( ( f " U. D
)  C_  ( f " ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) )  ->  ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) ) )
63, 4, 5mp2b 10 . . . . . . 7  |-  ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) )
7 imass2 5232 . . . . . . 7  |-  ( ( B  \  ( f
" ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) )  ->  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( g "
( B  \  (
f " U. D
) ) ) )
8 sscon 3473 . . . . . . 7  |-  ( ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( g "
( B  \  (
f " U. D
) ) )  -> 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) )
96, 7, 8mp2b 10 . . . . . 6  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  ( A  \ 
( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
10 imassrn 5208 . . . . . . . 8  |-  ( g
" ( B  \ 
( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ran  g
11 sstr2 3347 . . . . . . . 8  |-  ( ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A ) )
1210, 11ax-mp 8 . . . . . . 7  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A )
13 difss 3466 . . . . . . 7  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A
14 ssconb 3472 . . . . . . 7  |-  ( ( ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A  /\  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A )  -> 
( ( g "
( B  \  (
f " ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) )  <->  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) ) )
1512, 13, 14sylancl 644 . . . . . 6  |-  ( ran  g  C_  A  ->  ( ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  <->  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) ) )
169, 15mpbiri 225 . . . . 5  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )
1716, 13jctil 524 . . . 4  |-  ( ran  g  C_  A  ->  ( ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  A  /\  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) )
181, 13ssexi 4340 . . . . 5  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) )  e.  _V
19 sseq1 3361 . . . . . 6  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( x  C_  A  <->  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  A )
)
20 imaeq2 5191 . . . . . . . . 9  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( f " x )  =  ( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
2120difeq2d 3457 . . . . . . . 8  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( B  \  ( f " x
) )  =  ( B  \  ( f
" ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) ) )
2221imaeq2d 5195 . . . . . . 7  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( g " ( B  \ 
( f " x
) ) )  =  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
23 difeq2 3451 . . . . . . 7  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( A  \  x )  =  ( A  \  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
2422, 23sseq12d 3369 . . . . . 6  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( (
g " ( B 
\  ( f "
x ) ) ) 
C_  ( A  \  x )  <->  ( g " ( B  \ 
( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )
2519, 24anbi12d 692 . . . . 5  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( (
x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) )  <->  ( ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A  /\  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
2618, 25elab 3074 . . . 4  |-  ( ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  { x  |  ( x  C_  A  /\  ( g "
( B  \  (
f " x ) ) )  C_  ( A  \  x ) ) }  <->  ( ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A  /\  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) )
2717, 26sylibr 204 . . 3  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  { x  |  ( x  C_  A  /\  ( g "
( B  \  (
f " x ) ) )  C_  ( A  \  x ) ) } )
2827, 2syl6eleqr 2526 . 2  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  D )
29 elssuni 4035 . 2  |-  ( ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  D  -> 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  U. D )
3028, 29syl 16 1  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   _Vcvv 2948    \ cdif 3309    C_ wss 3312   U.cuni 4007   ran crn 4871   "cima 4873
This theorem is referenced by:  sbthlem3  7211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883
  Copyright terms: Public domain W3C validator