MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem3 Unicode version

Theorem sbthlem3 7155
Description: Lemma for sbth 7163. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem3  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) )  =  ( A  \  U. D ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem3
StepHypRef Expression
1 sbthlem.1 . . . . . 6  |-  A  e. 
_V
2 sbthlem.2 . . . . . 6  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem2 7154 . . . . 5  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
41, 2sbthlem1 7153 . . . . 5  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
53, 4jctil 524 . . . 4  |-  ( ran  g  C_  A  ->  ( U. D  C_  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) )  /\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  U. D ) )
6 eqss 3306 . . . 4  |-  ( U. D  =  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  <->  ( U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  /\  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  U. D ) )
75, 6sylibr 204 . . 3  |-  ( ran  g  C_  A  ->  U. D  =  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )
87difeq2d 3408 . 2  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  =  ( A 
\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )
9 imassrn 5156 . . . 4  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
10 sstr2 3298 . . . 4  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f " U. D ) ) ) 
C_  A ) )
119, 10ax-mp 8 . . 3  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A )
12 dfss4 3518 . . 3  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) )
1311, 12sylib 189 . 2  |-  ( ran  g  C_  A  ->  ( A  \  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )  =  ( g
" ( B  \ 
( f " U. D ) ) ) )
148, 13eqtr2d 2420 1  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) )  =  ( A  \  U. D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2373   _Vcvv 2899    \ cdif 3260    C_ wss 3263   U.cuni 3957   ran crn 4819   "cima 4821
This theorem is referenced by:  sbthlem4  7156  sbthlem5  7157
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-xp 4824  df-cnv 4826  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831
  Copyright terms: Public domain W3C validator