MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem3 Unicode version

Theorem sbthlem3 6989
Description: Lemma for sbth 6997. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem3  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) )  =  ( A  \  U. D ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem3
StepHypRef Expression
1 sbthlem.1 . . . . . 6  |-  A  e. 
_V
2 sbthlem.2 . . . . . 6  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem2 6988 . . . . 5  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
41, 2sbthlem1 6987 . . . . 5  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
53, 4jctil 523 . . . 4  |-  ( ran  g  C_  A  ->  ( U. D  C_  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) )  /\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  U. D ) )
6 eqss 3207 . . . 4  |-  ( U. D  =  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  <->  ( U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  /\  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  U. D ) )
75, 6sylibr 203 . . 3  |-  ( ran  g  C_  A  ->  U. D  =  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )
87difeq2d 3307 . 2  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  =  ( A 
\  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )
9 imassrn 5041 . . . 4  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
10 sstr2 3199 . . . 4  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f " U. D ) ) ) 
C_  A ) )
119, 10ax-mp 8 . . 3  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A )
12 dfss4 3416 . . 3  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  A  <->  ( A  \  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  =  ( g " ( B 
\  ( f " U. D ) ) ) )
1311, 12sylib 188 . 2  |-  ( ran  g  C_  A  ->  ( A  \  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) )  =  ( g
" ( B  \ 
( f " U. D ) ) ) )
148, 13eqtr2d 2329 1  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) )  =  ( A  \  U. D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   _Vcvv 2801    \ cdif 3162    C_ wss 3165   U.cuni 3843   ran crn 4706   "cima 4708
This theorem is referenced by:  sbthlem4  6990  sbthlem5  6991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718
  Copyright terms: Public domain W3C validator