MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem6 Unicode version

Theorem sbthlem6 7061
Description: Lemma for sbth 7066. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem6  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem6
StepHypRef Expression
1 df-ima 4781 . . . . 5  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
2 sbthlem.1 . . . . . 6  |-  A  e. 
_V
3 sbthlem.2 . . . . . 6  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
42, 3sbthlem4 7059 . . . . 5  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
51, 4syl5reqr 2405 . . . 4  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
65uneq2d 3405 . . 3  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  (
( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) ) )
7 rnun 5168 . . . 4  |-  ran  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
8 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
98rneqi 4984 . . . 4  |-  ran  H  =  ran  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
10 df-ima 4781 . . . . 5  |-  ( f
" U. D )  =  ran  ( f  |`  U. D )
1110uneq1i 3401 . . . 4  |-  ( ( f " U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
127, 9, 113eqtr4i 2388 . . 3  |-  ran  H  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
136, 12syl6reqr 2409 . 2  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  H  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) ) )
14 imassrn 5104 . . . 4  |-  ( f
" U. D ) 
C_  ran  f
15 sstr2 3262 . . . 4  |-  ( ( f " U. D
)  C_  ran  f  -> 
( ran  f  C_  B  ->  ( f " U. D )  C_  B
) )
1614, 15ax-mp 8 . . 3  |-  ( ran  f  C_  B  ->  ( f " U. D
)  C_  B )
17 undif 3610 . . 3  |-  ( ( f " U. D
)  C_  B  <->  ( (
f " U. D
)  u.  ( B 
\  ( f " U. D ) ) )  =  B )
1816, 17sylib 188 . 2  |-  ( ran  f  C_  B  ->  ( ( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  B )
1913, 18sylan9eqr 2412 1  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   {cab 2344   _Vcvv 2864    \ cdif 3225    u. cun 3226    C_ wss 3228   U.cuni 3906   `'ccnv 4767   dom cdm 4768   ran crn 4769    |` cres 4770   "cima 4771   Fun wfun 5328
This theorem is referenced by:  sbthlem9  7064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-fun 5336
  Copyright terms: Public domain W3C validator