MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem9 Unicode version

Theorem sbthlem9 6995
Description: Lemma for sbth 6997. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem9  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem9
StepHypRef Expression
1 sbthlem.1 . . . . . . . 8  |-  A  e. 
_V
2 sbthlem.2 . . . . . . . 8  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
3 sbthlem.3 . . . . . . . 8  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
41, 2, 3sbthlem7 6993 . . . . . . 7  |-  ( ( Fun  f  /\  Fun  `' g )  ->  Fun  H )
51, 2, 3sbthlem5 6991 . . . . . . . 8  |-  ( ( dom  f  =  A  /\  ran  g  C_  A )  ->  dom  H  =  A )
65adantrl 696 . . . . . . 7  |-  ( ( dom  f  =  A  /\  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
74, 6anim12i 549 . . . . . 6  |-  ( ( ( Fun  f  /\  Fun  `' g )  /\  ( dom  f  =  A  /\  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) ) )  ->  ( Fun  H  /\  dom  H  =  A ) )
87an42s 800 . . . . 5  |-  ( ( ( Fun  f  /\  dom  f  =  A
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  H  /\  dom  H  =  A ) )
98adantlr 695 . . . 4  |-  ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  H  /\  dom  H  =  A ) )
109adantlr 695 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( Fun  H  /\  dom  H  =  A ) )
111, 2, 3sbthlem8 6994 . . . 4  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
1211adantll 694 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
13 simpr 447 . . . . . . 7  |-  ( ( Fun  g  /\  dom  g  =  B )  ->  dom  g  =  B )
1413anim1i 551 . . . . . 6  |-  ( ( ( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  ->  ( dom  g  =  B  /\  ran  g  C_  A
) )
15 df-rn 4716 . . . . . . 7  |-  ran  H  =  dom  `' H
161, 2, 3sbthlem6 6992 . . . . . . 7  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
1715, 16syl5eqr 2342 . . . . . 6  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B
)
1814, 17sylanr1 633 . . . . 5  |-  ( ( ran  f  C_  B  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B )
1918adantll 694 . . . 4  |-  ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B
)
2019adantlr 695 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B )
2110, 12, 20jca32 521 . 2  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
22 df-f1 5276 . . . 4  |-  ( f : A -1-1-> B  <->  ( f : A --> B  /\  Fun  `' f ) )
23 df-f 5275 . . . . . 6  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
24 df-fn 5274 . . . . . . 7  |-  ( f  Fn  A  <->  ( Fun  f  /\  dom  f  =  A ) )
2524anbi1i 676 . . . . . 6  |-  ( ( f  Fn  A  /\  ran  f  C_  B )  <-> 
( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B ) )
2623, 25bitri 240 . . . . 5  |-  ( f : A --> B  <->  ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B ) )
2726anbi1i 676 . . . 4  |-  ( ( f : A --> B  /\  Fun  `' f )  <->  ( (
( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f ) )
2822, 27bitri 240 . . 3  |-  ( f : A -1-1-> B  <->  ( (
( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f ) )
29 df-f1 5276 . . . 4  |-  ( g : B -1-1-> A  <->  ( g : B --> A  /\  Fun  `' g ) )
30 df-f 5275 . . . . . 6  |-  ( g : B --> A  <->  ( g  Fn  B  /\  ran  g  C_  A ) )
31 df-fn 5274 . . . . . . 7  |-  ( g  Fn  B  <->  ( Fun  g  /\  dom  g  =  B ) )
3231anbi1i 676 . . . . . 6  |-  ( ( g  Fn  B  /\  ran  g  C_  A )  <-> 
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )
3330, 32bitri 240 . . . . 5  |-  ( g : B --> A  <->  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )
3433anbi1i 676 . . . 4  |-  ( ( g : B --> A  /\  Fun  `' g )  <->  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )
3529, 34bitri 240 . . 3  |-  ( g : B -1-1-> A  <->  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )
3628, 35anbi12i 678 . 2  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  <->  ( ( ( ( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) ) )
37 dff1o4 5496 . . 3  |-  ( H : A -1-1-onto-> B  <->  ( H  Fn  A  /\  `' H  Fn  B ) )
38 df-fn 5274 . . . 4  |-  ( H  Fn  A  <->  ( Fun  H  /\  dom  H  =  A ) )
39 df-fn 5274 . . . 4  |-  ( `' H  Fn  B  <->  ( Fun  `' H  /\  dom  `' H  =  B )
)
4038, 39anbi12i 678 . . 3  |-  ( ( H  Fn  A  /\  `' H  Fn  B
)  <->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
4137, 40bitri 240 . 2  |-  ( H : A -1-1-onto-> B  <->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
4221, 36, 413imtr4i 257 1  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   _Vcvv 2801    \ cdif 3162    u. cun 3163    C_ wss 3165   U.cuni 3843   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265    Fn wfn 5266   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270
This theorem is referenced by:  sbthlem10  6996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
  Copyright terms: Public domain W3C validator