MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem9 Unicode version

Theorem sbthlem9 6979
Description: Lemma for sbth 6981. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem9  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem9
StepHypRef Expression
1 sbthlem.1 . . . . . . . 8  |-  A  e. 
_V
2 sbthlem.2 . . . . . . . 8  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
3 sbthlem.3 . . . . . . . 8  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
41, 2, 3sbthlem7 6977 . . . . . . 7  |-  ( ( Fun  f  /\  Fun  `' g )  ->  Fun  H )
51, 2, 3sbthlem5 6975 . . . . . . . 8  |-  ( ( dom  f  =  A  /\  ran  g  C_  A )  ->  dom  H  =  A )
65adantrl 696 . . . . . . 7  |-  ( ( dom  f  =  A  /\  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
74, 6anim12i 549 . . . . . 6  |-  ( ( ( Fun  f  /\  Fun  `' g )  /\  ( dom  f  =  A  /\  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) ) )  ->  ( Fun  H  /\  dom  H  =  A ) )
87an42s 800 . . . . 5  |-  ( ( ( Fun  f  /\  dom  f  =  A
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  H  /\  dom  H  =  A ) )
98adantlr 695 . . . 4  |-  ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  H  /\  dom  H  =  A ) )
109adantlr 695 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( Fun  H  /\  dom  H  =  A ) )
111, 2, 3sbthlem8 6978 . . . 4  |-  ( ( Fun  `' f  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
1211adantll 694 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H
)
13 simpr 447 . . . . . . 7  |-  ( ( Fun  g  /\  dom  g  =  B )  ->  dom  g  =  B )
1413anim1i 551 . . . . . 6  |-  ( ( ( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  ->  ( dom  g  =  B  /\  ran  g  C_  A
) )
15 df-rn 4700 . . . . . . 7  |-  ran  H  =  dom  `' H
161, 2, 3sbthlem6 6976 . . . . . . 7  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
1715, 16syl5eqr 2329 . . . . . 6  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B
)
1814, 17sylanr1 633 . . . . 5  |-  ( ( ran  f  C_  B  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B )
1918adantll 694 . . . 4  |-  ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B
)
2019adantlr 695 . . 3  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  `' H  =  B )
2110, 12, 20jca32 521 . 2  |-  ( ( ( ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  ( ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
22 df-f1 5260 . . . 4  |-  ( f : A -1-1-> B  <->  ( f : A --> B  /\  Fun  `' f ) )
23 df-f 5259 . . . . . 6  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
24 df-fn 5258 . . . . . . 7  |-  ( f  Fn  A  <->  ( Fun  f  /\  dom  f  =  A ) )
2524anbi1i 676 . . . . . 6  |-  ( ( f  Fn  A  /\  ran  f  C_  B )  <-> 
( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B ) )
2623, 25bitri 240 . . . . 5  |-  ( f : A --> B  <->  ( ( Fun  f  /\  dom  f  =  A )  /\  ran  f  C_  B ) )
2726anbi1i 676 . . . 4  |-  ( ( f : A --> B  /\  Fun  `' f )  <->  ( (
( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f ) )
2822, 27bitri 240 . . 3  |-  ( f : A -1-1-> B  <->  ( (
( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f ) )
29 df-f1 5260 . . . 4  |-  ( g : B -1-1-> A  <->  ( g : B --> A  /\  Fun  `' g ) )
30 df-f 5259 . . . . . 6  |-  ( g : B --> A  <->  ( g  Fn  B  /\  ran  g  C_  A ) )
31 df-fn 5258 . . . . . . 7  |-  ( g  Fn  B  <->  ( Fun  g  /\  dom  g  =  B ) )
3231anbi1i 676 . . . . . 6  |-  ( ( g  Fn  B  /\  ran  g  C_  A )  <-> 
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )
3330, 32bitri 240 . . . . 5  |-  ( g : B --> A  <->  ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A ) )
3433anbi1i 676 . . . 4  |-  ( ( g : B --> A  /\  Fun  `' g )  <->  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )
3529, 34bitri 240 . . 3  |-  ( g : B -1-1-> A  <->  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )
3628, 35anbi12i 678 . 2  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  <->  ( ( ( ( Fun  f  /\  dom  f  =  A
)  /\  ran  f  C_  B )  /\  Fun  `' f )  /\  (
( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g ) ) )
37 dff1o4 5480 . . 3  |-  ( H : A -1-1-onto-> B  <->  ( H  Fn  A  /\  `' H  Fn  B ) )
38 df-fn 5258 . . . 4  |-  ( H  Fn  A  <->  ( Fun  H  /\  dom  H  =  A ) )
39 df-fn 5258 . . . 4  |-  ( `' H  Fn  B  <->  ( Fun  `' H  /\  dom  `' H  =  B )
)
4038, 39anbi12i 678 . . 3  |-  ( ( H  Fn  A  /\  `' H  Fn  B
)  <->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
4137, 40bitri 240 . 2  |-  ( H : A -1-1-onto-> B  <->  ( ( Fun 
H  /\  dom  H  =  A )  /\  ( Fun  `' H  /\  dom  `' H  =  B )
) )
4221, 36, 413imtr4i 257 1  |-  ( ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788    \ cdif 3149    u. cun 3150    C_ wss 3152   U.cuni 3827   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -1-1-onto->wf1o 5254
This theorem is referenced by:  sbthlem10  6980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
  Copyright terms: Public domain W3C validator