MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Unicode version

Theorem scaffval 15970
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .s f `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scaffval  |-  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )
Distinct variable groups:    x, y, B    x, K, y    x,  .x. , y    x, W, y
Allowed substitution hints:    .xb ( x, y)    F( x, y)

Proof of Theorem scaffval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2  |-  .xb  =  ( .s f `  W
)
2 fveq2 5730 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
3 scaffval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
42, 3syl6eqr 2488 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
54fveq2d 5734 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
6 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
75, 6syl6eqr 2488 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
8 fveq2 5730 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
9 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
108, 9syl6eqr 2488 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
11 fveq2 5730 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
12 scaffval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
1311, 12syl6eqr 2488 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1413oveqd 6100 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) y )  =  ( x  .x.  y ) )
157, 10, 14mpt2eq123dv 6138 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
) ,  y  e.  ( Base `  w
)  |->  ( x ( .s `  w ) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
16 df-scaf 15955 . . . 4  |-  .s f  =  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) ) ,  y  e.  ( Base `  w )  |->  ( x ( .s `  w
) y ) ) )
17 df-ov 6086 . . . . . . . 8  |-  ( x 
.x.  y )  =  (  .x.  `  <. x ,  y >. )
18 fvrn0 5755 . . . . . . . 8  |-  (  .x.  ` 
<. x ,  y >.
)  e.  ( ran 
.x.  u.  { (/) } )
1917, 18eqeltri 2508 . . . . . . 7  |-  ( x 
.x.  y )  e.  ( ran  .x.  u.  {
(/) } )
2019rgen2w 2776 . . . . . 6  |-  A. x  e.  K  A. y  e.  B  ( x  .x.  y )  e.  ( ran  .x.  u.  { (/) } )
21 eqid 2438 . . . . . . 7  |-  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) )
2221fmpt2 6420 . . . . . 6  |-  ( A. x  e.  K  A. y  e.  B  (
x  .x.  y )  e.  ( ran  .x.  u.  {
(/) } )  <->  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) : ( K  X.  B
) --> ( ran  .x.  u.  { (/) } ) )
2320, 22mpbi 201 . . . . 5  |-  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) ) : ( K  X.  B ) --> ( ran 
.x.  u.  { (/) } )
24 fvex 5744 . . . . . . 7  |-  ( Base `  F )  e.  _V
256, 24eqeltri 2508 . . . . . 6  |-  K  e. 
_V
26 fvex 5744 . . . . . . 7  |-  ( Base `  W )  e.  _V
279, 26eqeltri 2508 . . . . . 6  |-  B  e. 
_V
2825, 27xpex 4992 . . . . 5  |-  ( K  X.  B )  e. 
_V
29 fvex 5744 . . . . . . . 8  |-  ( .s
`  W )  e. 
_V
3012, 29eqeltri 2508 . . . . . . 7  |-  .x.  e.  _V
3130rnex 5135 . . . . . 6  |-  ran  .x.  e.  _V
32 p0ex 4388 . . . . . 6  |-  { (/) }  e.  _V
3331, 32unex 4709 . . . . 5  |-  ( ran 
.x.  u.  { (/) } )  e.  _V
34 fex2 5605 . . . . 5  |-  ( ( ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) : ( K  X.  B ) --> ( ran  .x.  u.  {
(/) } )  /\  ( K  X.  B )  e. 
_V  /\  ( ran  .x. 
u.  { (/) } )  e.  _V )  -> 
( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )  e.  _V )
3523, 28, 33, 34mp3an 1280 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) )  e.  _V
3615, 16, 35fvmpt 5808 . . 3  |-  ( W  e.  _V  ->  ( .s f `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
37 fvprc 5724 . . . . 5  |-  ( -.  W  e.  _V  ->  ( .s f `  W
)  =  (/) )
38 mpt20 6429 . . . . 5  |-  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) )  =  (/)
3937, 38syl6eqr 2488 . . . 4  |-  ( -.  W  e.  _V  ->  ( .s f `  W
)  =  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) ) )
40 fvprc 5724 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  (Scalar `  W )  =  (/) )
413, 40syl5eq 2482 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  F  =  (/) )
4241fveq2d 5734 . . . . . . 7  |-  ( -.  W  e.  _V  ->  (
Base `  F )  =  ( Base `  (/) ) )
436, 42syl5eq 2482 . . . . . 6  |-  ( -.  W  e.  _V  ->  K  =  ( Base `  (/) ) )
44 base0 13508 . . . . . 6  |-  (/)  =  (
Base `  (/) )
4543, 44syl6eqr 2488 . . . . 5  |-  ( -.  W  e.  _V  ->  K  =  (/) )
46 eqid 2438 . . . . 5  |-  B  =  B
47 mpt2eq12 6136 . . . . 5  |-  ( ( K  =  (/)  /\  B  =  B )  ->  (
x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  =  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) ) )
4845, 46, 47sylancl 645 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  =  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) ) )
4939, 48eqtr4d 2473 . . 3  |-  ( -.  W  e.  _V  ->  ( .s f `  W
)  =  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) ) )
5036, 49pm2.61i 159 . 2  |-  ( .s f `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) )
511, 50eqtri 2458 1  |-  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    u. cun 3320   (/)c0 3630   {csn 3816   <.cop 3819    X. cxp 4878   ran crn 4881   -->wf 5452   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   Basecbs 13471  Scalarcsca 13534   .scvsca 13535   .s fcscaf 15953
This theorem is referenced by:  scafval  15971  scafeq  15972  scaffn  15973  lmodscaf  15974  rlmscaf  16281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-slot 13475  df-base 13476  df-scaf 15955
  Copyright terms: Public domain W3C validator