Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconpi1 Unicode version

Theorem sconpi1 23770
Description: A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
sconpi1.1  |-  X  = 
U. J
Assertion
Ref Expression
sconpi1  |-  ( ( J  e. PCon  /\  Y  e.  X )  ->  ( J  e. SCon  <->  ( Base `  ( J  pi 1  Y ) )  ~~  1o ) )

Proof of Theorem sconpi1
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scontop 23759 . . . . . . . . 9  |-  ( J  e. SCon  ->  J  e.  Top )
21adantl 452 . . . . . . . 8  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  J  e.  Top )
3 simpl 443 . . . . . . . 8  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  Y  e.  X )
4 eqid 2283 . . . . . . . . 9  |-  ( J  pi 1  Y )  =  ( J  pi 1  Y )
5 eqid 2283 . . . . . . . . 9  |-  ( Base `  ( J  pi 1  Y ) )  =  ( Base `  ( J  pi 1  Y ) )
6 simpl 443 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  J  e.  Top )
7 sconpi1.1 . . . . . . . . . . 11  |-  X  = 
U. J
87toptopon 16671 . . . . . . . . . 10  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
96, 8sylib 188 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  J  e.  (TopOn `  X ) )
10 simpr 447 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  Y  e.  X )
114, 5, 9, 10elpi1 18543 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  ( x  e.  (
Base `  ( J  pi 1  Y )
)  <->  E. f  e.  ( II  Cn  J ) ( ( ( f `
 0 )  =  Y  /\  ( f `
 1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) ) ) )
122, 3, 11syl2anc 642 . . . . . . 7  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( x  e.  ( Base `  ( J  pi 1  Y ) )  <->  E. f  e.  ( II  Cn  J
) ( ( ( f `  0 )  =  Y  /\  (
f `  1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) ) ) )
13 phtpcer 18493 . . . . . . . . . . . . 13  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
1413a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  (  ~=ph  `  J )  Er  (
II  Cn  J )
)
15 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  J  e. SCon )
16 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  f  e.  ( II  Cn  J
) )
17 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( f `  0 )  =  Y )
18 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( f `  1 )  =  Y )
1917, 18eqtr4d 2318 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( f `  0 )  =  ( f `  1
) )
20 sconpht 23760 . . . . . . . . . . . . . 14  |-  ( ( J  e. SCon  /\  f  e.  ( II  Cn  J
)  /\  ( f `  0 )  =  ( f `  1
) )  ->  f
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) )
2115, 16, 19, 20syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )
2217sneqd 3653 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  { (
f `  0 ) }  =  { Y } )
2322xpeq2d 4713 . . . . . . . . . . . . 13  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( (
0 [,] 1 )  X.  { ( f `
 0 ) } )  =  ( ( 0 [,] 1 )  X.  { Y }
) )
2421, 23breqtrd 4047 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { Y }
) )
2514, 24erthi 6706 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { Y } ) ] ( 
~=ph  `  J ) )
262, 8sylib 188 . . . . . . . . . . . . 13  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  J  e.  (TopOn `  X
) )
27 eqid 2283 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  { Y }
)  =  ( ( 0 [,] 1 )  X.  { Y }
)
284, 27pi1id 18549 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  X )  ->  [ ( ( 0 [,] 1
)  X.  { Y } ) ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi 1  Y ) ) )
2926, 3, 28syl2anc 642 . . . . . . . . . . . 12  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  [ ( ( 0 [,] 1 )  X.  { Y } ) ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi 1  Y ) ) )
3029ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  [ (
( 0 [,] 1
)  X.  { Y } ) ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi 1  Y ) ) )
3125, 30eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  [ f ] (  ~=ph  `  J
)  =  ( 0g
`  ( J  pi 1  Y ) ) )
32 elsn 3655 . . . . . . . . . . 11  |-  ( x  e.  { ( 0g
`  ( J  pi 1  Y ) ) }  <->  x  =  ( 0g `  ( J  pi 1  Y ) ) )
33 eqeq1 2289 . . . . . . . . . . 11  |-  ( x  =  [ f ] (  ~=ph  `  J )  ->  ( x  =  ( 0g `  ( J  pi 1  Y ) )  <->  [ f ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi 1  Y ) ) ) )
3432, 33syl5bb 248 . . . . . . . . . 10  |-  ( x  =  [ f ] (  ~=ph  `  J )  ->  ( x  e. 
{ ( 0g `  ( J  pi 1  Y ) ) }  <->  [ f ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi 1  Y ) ) ) )
3531, 34syl5ibrcom 213 . . . . . . . . 9  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( x  =  [ f ] ( 
~=ph  `  J )  ->  x  e.  { ( 0g `  ( J  pi 1  Y ) ) } ) )
3635expimpd 586 . . . . . . . 8  |-  ( ( ( Y  e.  X  /\  J  e. SCon )  /\  f  e.  ( II  Cn  J ) )  -> 
( ( ( ( f `  0 )  =  Y  /\  (
f `  1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) )  ->  x  e.  {
( 0g `  ( J  pi 1  Y ) ) } ) )
3736rexlimdva 2667 . . . . . . 7  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( E. f  e.  ( II  Cn  J ) ( ( ( f `
 0 )  =  Y  /\  ( f `
 1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) )  ->  x  e.  {
( 0g `  ( J  pi 1  Y ) ) } ) )
3812, 37sylbid 206 . . . . . 6  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( x  e.  ( Base `  ( J  pi 1  Y ) )  ->  x  e.  { ( 0g `  ( J  pi 1  Y ) ) } ) )
3938ssrdv 3185 . . . . 5  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  (
Base `  ( J  pi 1  Y )
)  C_  { ( 0g `  ( J  pi 1  Y ) ) } )
404pi1grp 18548 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  X )  ->  ( J  pi 1  Y )  e.  Grp )
4126, 3, 40syl2anc 642 . . . . . . 7  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( J  pi 1  Y
)  e.  Grp )
42 eqid 2283 . . . . . . . 8  |-  ( 0g
`  ( J  pi 1  Y ) )  =  ( 0g `  ( J  pi 1  Y ) )
435, 42grpidcl 14510 . . . . . . 7  |-  ( ( J  pi 1  Y
)  e.  Grp  ->  ( 0g `  ( J  pi 1  Y ) )  e.  ( Base `  ( J  pi 1  Y ) ) )
4441, 43syl 15 . . . . . 6  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( 0g `  ( J  pi 1  Y ) )  e.  ( Base `  ( J  pi 1  Y ) ) )
4544snssd 3760 . . . . 5  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  { ( 0g `  ( J  pi 1  Y ) ) }  C_  ( Base `  ( J  pi 1  Y ) ) )
4639, 45eqssd 3196 . . . 4  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  (
Base `  ( J  pi 1  Y )
)  =  { ( 0g `  ( J  pi 1  Y ) ) } )
47 fvex 5539 . . . . 5  |-  ( 0g
`  ( J  pi 1  Y ) )  e.  _V
4847ensn1 6925 . . . 4  |-  { ( 0g `  ( J  pi 1  Y ) ) }  ~~  1o
4946, 48syl6eqbr 4060 . . 3  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  (
Base `  ( J  pi 1  Y )
)  ~~  1o )
5049adantll 694 . 2  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  J  e. SCon )  -> 
( Base `  ( J  pi 1  Y )
)  ~~  1o )
51 simpll 730 . . 3  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  ->  J  e. PCon )
52 eqid 2283 . . . . . . . . 9  |-  ( J  pi 1  ( f `
 0 ) )  =  ( J  pi 1  ( f ` 
0 ) )
53 eqid 2283 . . . . . . . . 9  |-  ( Base `  ( J  pi 1 
( f `  0
) ) )  =  ( Base `  ( J  pi 1  ( f `
 0 ) ) )
54 simplll 734 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  J  e. PCon )
55 pcontop 23756 . . . . . . . . . . 11  |-  ( J  e. PCon  ->  J  e.  Top )
5654, 55syl 15 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  J  e.  Top )
5756, 8sylib 188 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  J  e.  (TopOn `  X ) )
58 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f  e.  ( II  Cn  J
) )
59 iiuni 18385 . . . . . . . . . . . 12  |-  ( 0 [,] 1 )  = 
U. II
6059, 7cnf 16976 . . . . . . . . . . 11  |-  ( f  e.  ( II  Cn  J )  ->  f : ( 0 [,] 1 ) --> X )
6158, 60syl 15 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f :
( 0 [,] 1
) --> X )
62 0elunit 10754 . . . . . . . . . 10  |-  0  e.  ( 0 [,] 1
)
63 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( f `  0 )  e.  X )
6461, 62, 63sylancl 643 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  0 )  e.  X )
65 eqidd 2284 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  0 )  =  ( f `  0
) )
66 simprr 733 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  0 )  =  ( f `  1
) )
6766eqcomd 2288 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  1 )  =  ( f `  0
) )
6852, 53, 57, 64, 58, 65, 67elpi1i 18544 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ f ] (  ~=ph  `  J
)  e.  ( Base `  ( J  pi 1 
( f `  0
) ) ) )
69 eqid 2283 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } )  =  ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } )
7069pcoptcl 18519 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  (
f `  0 )  e.  X )  ->  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } )  e.  ( II  Cn  J
)  /\  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) `  0
)  =  ( f `
 0 )  /\  ( ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) `
 1 )  =  ( f `  0
) ) )
7157, 64, 70syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } )  e.  ( II  Cn  J )  /\  ( ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) `  0 )  =  ( f ` 
0 )  /\  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ` 
1 )  =  ( f `  0 ) ) )
7271simp1d 967 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
0 [,] 1 )  X.  { ( f `
 0 ) } )  e.  ( II 
Cn  J ) )
7371simp2d 968 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) `  0
)  =  ( f `
 0 ) )
7471simp3d 969 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) `  1
)  =  ( f `
 0 ) )
7552, 53, 57, 64, 72, 73, 74elpi1i 18544 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J )  e.  ( Base `  ( J  pi 1  ( f `
 0 ) ) ) )
76 simpllr 735 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  Y  e.  X )
777, 52, 4, 53, 5pconpi1 23768 . . . . . . . . . . . 12  |-  ( ( J  e. PCon  /\  (
f `  0 )  e.  X  /\  Y  e.  X )  ->  ( J  pi 1  ( f `
 0 ) ) 
~=ph𝑔  ( J  pi 1  Y ) )
7854, 64, 76, 77syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( J  pi 1  ( f `  0 ) ) 
~=ph𝑔  ( J  pi 1  Y ) )
7953, 5gicen 14741 . . . . . . . . . . 11  |-  ( ( J  pi 1  ( f `  0 ) )  ~=ph𝑔  ( J  pi 1  Y )  ->  ( Base `  ( J  pi 1  ( f ` 
0 ) ) ) 
~~  ( Base `  ( J  pi 1  Y ) ) )
8078, 79syl 15 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi 1 
( f `  0
) ) )  ~~  ( Base `  ( J  pi 1  Y )
) )
81 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi 1  Y ) )  ~~  1o )
82 entr 6913 . . . . . . . . . 10  |-  ( ( ( Base `  ( J  pi 1  ( f `
 0 ) ) )  ~~  ( Base `  ( J  pi 1  Y ) )  /\  ( Base `  ( J  pi 1  Y )
)  ~~  1o )  ->  ( Base `  ( J  pi 1  ( f `
 0 ) ) )  ~~  1o )
8380, 81, 82syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi 1 
( f `  0
) ) )  ~~  1o )
84 en1eqsn 7088 . . . . . . . . 9  |-  ( ( [ ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ] (  ~=ph  `  J
)  e.  ( Base `  ( J  pi 1 
( f `  0
) ) )  /\  ( Base `  ( J  pi 1  ( f `  0 ) ) )  ~~  1o )  ->  ( Base `  ( J  pi 1  ( f `
 0 ) ) )  =  { [
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ] (  ~=ph  `  J ) } )
8575, 83, 84syl2anc 642 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi 1 
( f `  0
) ) )  =  { [ ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ] (  ~=ph  `  J ) } )
8668, 85eleqtrd 2359 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ f ] (  ~=ph  `  J
)  e.  { [
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ] (  ~=ph  `  J ) } )
87 elsni 3664 . . . . . . 7  |-  ( [ f ] (  ~=ph  `  J )  e.  { [ ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ] (  ~=ph  `  J
) }  ->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J ) )
8886, 87syl 15 . . . . . 6  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J ) )
8913a1i 10 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  (  ~=ph  `  J )  Er  (
II  Cn  J )
)
9089, 58erth 6704 . . . . . 6  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( f `  0
) } )  <->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J ) ) )
9188, 90mpbird 223 . . . . 5  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )
9291expr 598 . . . 4  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  /\  f  e.  ( II  Cn  J
) )  ->  (
( f `  0
)  =  ( f `
 1 )  -> 
f (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ) )
9392ralrimiva 2626 . . 3  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  ->  A. f  e.  ( II  Cn  J ) ( ( f ` 
0 )  =  ( f `  1 )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ) )
94 isscon 23757 . . 3  |-  ( J  e. SCon 
<->  ( J  e. PCon  /\  A. f  e.  ( II 
Cn  J ) ( ( f `  0
)  =  ( f `
 1 )  -> 
f (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ) ) )
9551, 93, 94sylanbrc 645 . 2  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  ( Base `  ( J  pi 1  Y ) )  ~~  1o )  ->  J  e. SCon )
9650, 95impbida 805 1  |-  ( ( J  e. PCon  /\  Y  e.  X )  ->  ( J  e. SCon  <->  ( Base `  ( J  pi 1  Y ) )  ~~  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {csn 3640   U.cuni 3827   class class class wbr 4023    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   1oc1o 6472    Er wer 6657   [cec 6658    ~~ cen 6860   0cc0 8737   1c1 8738   [,]cicc 10659   Basecbs 13148   0gc0g 13400   Grpcgrp 14362    ~=ph𝑔 cgic 14722   Topctop 16631  TopOnctopon 16632    Cn ccn 16954   IIcii 18379    ~=ph cphtpc 18467    pi 1 cpi1 18501  PConcpcon 23750  SConcscon 23751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-grp 14489  df-mulg 14492  df-ghm 14681  df-gim 14723  df-gic 14724  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-htpy 18468  df-phtpy 18469  df-phtpc 18490  df-pco 18503  df-om1 18504  df-pi1 18506  df-pcon 23752  df-scon 23753
  Copyright terms: Public domain W3C validator