MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0s Unicode version

Theorem scott0s 7772
Description: Theorem scheme version of scott0 7770. The collection of all  x of minimum rank such that 
ph ( x ) is true, is not empty iff there is an  x such that  ph ( x ) holds. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scott0s  |-  ( E. x ph  <->  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  =/=  (/) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem scott0s
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 abn0 3610 . 2  |-  ( { x  |  ph }  =/=  (/)  <->  E. x ph )
2 scott0 7770 . . . 4  |-  ( { x  |  ph }  =  (/)  <->  { z  e.  {
x  |  ph }  |  A. y  e.  {
x  |  ph } 
( rank `  z )  C_  ( rank `  y
) }  =  (/) )
3 nfcv 2544 . . . . . . 7  |-  F/_ z { x  |  ph }
4 nfab1 2546 . . . . . . 7  |-  F/_ x { x  |  ph }
5 nfv 1626 . . . . . . . 8  |-  F/ x
( rank `  z )  C_  ( rank `  y
)
64, 5nfral 2723 . . . . . . 7  |-  F/ x A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )
7 nfv 1626 . . . . . . 7  |-  F/ z A. y  e.  {
x  |  ph } 
( rank `  x )  C_  ( rank `  y
)
8 fveq2 5691 . . . . . . . . 9  |-  ( z  =  x  ->  ( rank `  z )  =  ( rank `  x
) )
98sseq1d 3339 . . . . . . . 8  |-  ( z  =  x  ->  (
( rank `  z )  C_  ( rank `  y
)  <->  ( rank `  x
)  C_  ( rank `  y ) ) )
109ralbidv 2690 . . . . . . 7  |-  ( z  =  x  ->  ( A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )  <->  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) )
113, 4, 6, 7, 10cbvrab 2918 . . . . . 6  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  e. 
{ x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }
12 df-rab 2679 . . . . . 6  |-  { x  e.  { x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }  =  { x  |  (
x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) ) }
13 abid 2396 . . . . . . . 8  |-  ( x  e.  { x  | 
ph }  <->  ph )
14 df-ral 2675 . . . . . . . . 9  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
15 df-sbc 3126 . . . . . . . . . . 11  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
1615imbi1i 316 . . . . . . . . . 10  |-  ( (
[. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1716albii 1572 . . . . . . . . 9  |-  ( A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1814, 17bitr4i 244 . . . . . . . 8  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1913, 18anbi12i 679 . . . . . . 7  |-  ( ( x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) )
2019abbii 2520 . . . . . 6  |-  { x  |  ( x  e. 
{ x  |  ph }  /\  A. y  e. 
{ x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
2111, 12, 203eqtri 2432 . . . . 5  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
2221eqeq1i 2415 . . . 4  |-  ( { z  e.  { x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =  (/) )
232, 22bitri 241 . . 3  |-  ( { x  |  ph }  =  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =  (/) )
2423necon3bii 2603 . 2  |-  ( { x  |  ph }  =/=  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =/=  (/) )
251, 24bitr3i 243 1  |-  ( E. x ph  <->  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2394    =/= wne 2571   A.wral 2670   {crab 2674   [.wsbc 3125    C_ wss 3284   (/)c0 3592   ` cfv 5417   rankcrnk 7649
This theorem is referenced by:  hta  7781
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-recs 6596  df-rdg 6631  df-r1 7650  df-rank 7651
  Copyright terms: Public domain W3C validator