MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Structured version   Unicode version

Theorem scottex 7801
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex  |-  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
Distinct variable group:    x, y, A

Proof of Theorem scottex
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4331 . . . 4  |-  (/)  e.  _V
2 eleq1 2495 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  _V  <->  (/)  e.  _V ) )
31, 2mpbiri 225 . . 3  |-  ( A  =  (/)  ->  A  e. 
_V )
4 rabexg 4345 . . 3  |-  ( A  e.  _V  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
53, 4syl 16 . 2  |-  ( A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
6 neq0 3630 . . 3  |-  ( -.  A  =  (/)  <->  E. y 
y  e.  A )
7 nfra1 2748 . . . . . 6  |-  F/ y A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)
8 nfcv 2571 . . . . . 6  |-  F/_ y A
97, 8nfrab 2881 . . . . 5  |-  F/_ y { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }
109nfel1 2581 . . . 4  |-  F/ y { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  e.  _V
11 rsp 2758 . . . . . . . 8  |-  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y )  ->  ( y  e.  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1211com12 29 . . . . . . 7  |-  ( y  e.  A  ->  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1312ralrimivw 2782 . . . . . 6  |-  ( y  e.  A  ->  A. x  e.  A  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y )  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
14 ss2rab 3411 . . . . . 6  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) } 
<-> 
A. x  e.  A  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1513, 14sylibr 204 . . . . 5  |-  ( y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) } )
16 rankon 7713 . . . . . . . 8  |-  ( rank `  y )  e.  On
17 fveq2 5720 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( rank `  x )  =  ( rank `  w
) )
1817sseq1d 3367 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  w
)  C_  ( rank `  y ) ) )
1918elrab 3084 . . . . . . . . . 10  |-  ( w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  <-> 
( w  e.  A  /\  ( rank `  w
)  C_  ( rank `  y ) ) )
2019simprbi 451 . . . . . . . . 9  |-  ( w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ->  ( rank `  w
)  C_  ( rank `  y ) )
2120rgen 2763 . . . . . . . 8  |-  A. w  e.  { x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  ( rank `  y )
22 sseq2 3362 . . . . . . . . . 10  |-  ( z  =  ( rank `  y
)  ->  ( ( rank `  w )  C_  z 
<->  ( rank `  w
)  C_  ( rank `  y ) ) )
2322ralbidv 2717 . . . . . . . . 9  |-  ( z  =  ( rank `  y
)  ->  ( A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z  <->  A. w  e.  { x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  ( rank `  y )
) )
2423rspcev 3044 . . . . . . . 8  |-  ( ( ( rank `  y
)  e.  On  /\  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  ( rank `  y ) )  ->  E. z  e.  On  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z )
2516, 21, 24mp2an 654 . . . . . . 7  |-  E. z  e.  On  A. w  e. 
{ x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  z
26 bndrank 7759 . . . . . . 7  |-  ( E. z  e.  On  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z  ->  { x  e.  A  | 
( rank `  x )  C_  ( rank `  y
) }  e.  _V )
2725, 26ax-mp 8 . . . . . 6  |-  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
2827ssex 4339 . . . . 5  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
2915, 28syl 16 . . . 4  |-  ( y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
3010, 29exlimi 1821 . . 3  |-  ( E. y  y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  e.  _V )
316, 30sylbi 188 . 2  |-  ( -.  A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
325, 31pm2.61i 158 1  |-  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    C_ wss 3312   (/)c0 3620   Oncon0 4573   ` cfv 5446   rankcrnk 7681
This theorem is referenced by:  scottexs  7803  cplem2  7806  kardex  7810
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-reg 7552  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-recs 6625  df-rdg 6660  df-r1 7682  df-rank 7683
  Copyright terms: Public domain W3C validator