MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Unicode version

Theorem scottex 7571
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex  |-  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
Distinct variable group:    x, y, A

Proof of Theorem scottex
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4166 . . . 4  |-  (/)  e.  _V
2 eleq1 2356 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  _V  <->  (/)  e.  _V ) )
31, 2mpbiri 224 . . 3  |-  ( A  =  (/)  ->  A  e. 
_V )
4 rabexg 4180 . . 3  |-  ( A  e.  _V  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
53, 4syl 15 . 2  |-  ( A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
6 neq0 3478 . . 3  |-  ( -.  A  =  (/)  <->  E. y 
y  e.  A )
7 nfra1 2606 . . . . . 6  |-  F/ y A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)
8 nfcv 2432 . . . . . 6  |-  F/_ y A
97, 8nfrab 2734 . . . . 5  |-  F/_ y { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }
109nfel1 2442 . . . 4  |-  F/ y { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  e.  _V
11 rsp 2616 . . . . . . . 8  |-  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y )  ->  ( y  e.  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1211com12 27 . . . . . . 7  |-  ( y  e.  A  ->  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1312ralrimivw 2640 . . . . . 6  |-  ( y  e.  A  ->  A. x  e.  A  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y )  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
14 ss2rab 3262 . . . . . 6  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) } 
<-> 
A. x  e.  A  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1513, 14sylibr 203 . . . . 5  |-  ( y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) } )
16 rankon 7483 . . . . . . . 8  |-  ( rank `  y )  e.  On
17 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( rank `  x )  =  ( rank `  w
) )
1817sseq1d 3218 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  w
)  C_  ( rank `  y ) ) )
1918elrab 2936 . . . . . . . . . 10  |-  ( w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  <-> 
( w  e.  A  /\  ( rank `  w
)  C_  ( rank `  y ) ) )
2019simprbi 450 . . . . . . . . 9  |-  ( w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ->  ( rank `  w
)  C_  ( rank `  y ) )
2120rgen 2621 . . . . . . . 8  |-  A. w  e.  { x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  ( rank `  y )
22 sseq2 3213 . . . . . . . . . 10  |-  ( z  =  ( rank `  y
)  ->  ( ( rank `  w )  C_  z 
<->  ( rank `  w
)  C_  ( rank `  y ) ) )
2322ralbidv 2576 . . . . . . . . 9  |-  ( z  =  ( rank `  y
)  ->  ( A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z  <->  A. w  e.  { x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  ( rank `  y )
) )
2423rspcev 2897 . . . . . . . 8  |-  ( ( ( rank `  y
)  e.  On  /\  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  ( rank `  y ) )  ->  E. z  e.  On  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z )
2516, 21, 24mp2an 653 . . . . . . 7  |-  E. z  e.  On  A. w  e. 
{ x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  z
26 bndrank 7529 . . . . . . 7  |-  ( E. z  e.  On  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z  ->  { x  e.  A  | 
( rank `  x )  C_  ( rank `  y
) }  e.  _V )
2725, 26ax-mp 8 . . . . . 6  |-  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
2827ssex 4174 . . . . 5  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
2915, 28syl 15 . . . 4  |-  ( y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
3010, 29exlimi 1813 . . 3  |-  ( E. y  y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  e.  _V )
316, 30sylbi 187 . 2  |-  ( -.  A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
325, 31pm2.61i 156 1  |-  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    C_ wss 3165   (/)c0 3468   Oncon0 4408   ` cfv 5271   rankcrnk 7451
This theorem is referenced by:  scottexs  7573  cplem2  7576  kardex  7580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator