Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdclem1 Structured version   Unicode version

Theorem sdclem1 26489
Description: Lemma for sdc 26490. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sdc.1  |-  Z  =  ( ZZ>= `  M )
sdc.2  |-  ( g  =  ( f  |`  ( M ... n ) )  ->  ( ps  <->  ch ) )
sdc.3  |-  ( n  =  M  ->  ( ps 
<->  ta ) )
sdc.4  |-  ( n  =  k  ->  ( ps 
<->  th ) )
sdc.5  |-  ( ( g  =  h  /\  n  =  ( k  +  1 ) )  ->  ( ps  <->  si )
)
sdc.6  |-  ( ph  ->  A  e.  V )
sdc.7  |-  ( ph  ->  M  e.  ZZ )
sdc.8  |-  ( ph  ->  E. g ( g : { M } --> A  /\  ta ) )
sdc.9  |-  ( (
ph  /\  k  e.  Z )  ->  (
( g : ( M ... k ) --> A  /\  th )  ->  E. h ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
sdc.10  |-  J  =  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) }
sdc.11  |-  F  =  ( w  e.  Z ,  x  e.  J  |->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )
Assertion
Ref Expression
sdclem1  |-  ( ph  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
Distinct variable groups:    f, g, h, k, n, w, x, A    h, J, k, w, x    f, M, g, h, k, n, w, x    ch, g    n, F, w, x    ps, f, h, k, x    si, f,
g, n, x    ph, n, w, x    th, n, w, x    h, V    ta, h, k, n, w, x   
f, Z, g, h, k, n, w, x    ph, g, h, k
Allowed substitution hints:    ph( f)    ps( w, g, n)    ch( x, w, f, h, k, n)    th( f, g, h, k)    ta( f, g)    si( w, h, k)    F( f, g, h, k)    J( f, g, n)    V( x, w, f, g, k, n)

Proof of Theorem sdclem1
Dummy variables  j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdc.8 . 2  |-  ( ph  ->  E. g ( g : { M } --> A  /\  ta ) )
2 sdc.10 . . . . . 6  |-  J  =  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) }
3 sdc.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
4 fvex 5773 . . . . . . . 8  |-  ( ZZ>= `  M )  e.  _V
53, 4eqeltri 2513 . . . . . . 7  |-  Z  e. 
_V
6 simpl 445 . . . . . . . . . . 11  |-  ( ( g : ( M ... n ) --> A  /\  ps )  -> 
g : ( M ... n ) --> A )
7 sdc.6 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  V )
8 ovex 6142 . . . . . . . . . . . 12  |-  ( M ... n )  e. 
_V
9 elmapg 7067 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( M ... n )  e.  _V )  -> 
( g  e.  ( A  ^m  ( M ... n ) )  <-> 
g : ( M ... n ) --> A ) )
107, 8, 9sylancl 645 . . . . . . . . . . 11  |-  ( ph  ->  ( g  e.  ( A  ^m  ( M ... n ) )  <-> 
g : ( M ... n ) --> A ) )
116, 10syl5ibr 214 . . . . . . . . . 10  |-  ( ph  ->  ( ( g : ( M ... n
) --> A  /\  ps )  ->  g  e.  ( A  ^m  ( M ... n ) ) ) )
1211abssdv 3406 . . . . . . . . 9  |-  ( ph  ->  { g  |  ( g : ( M ... n ) --> A  /\  ps ) } 
C_  ( A  ^m  ( M ... n ) ) )
13 ovex 6142 . . . . . . . . 9  |-  ( A  ^m  ( M ... n ) )  e. 
_V
14 ssexg 4384 . . . . . . . . 9  |-  ( ( { g  |  ( g : ( M ... n ) --> A  /\  ps ) } 
C_  ( A  ^m  ( M ... n ) )  /\  ( A  ^m  ( M ... n ) )  e. 
_V )  ->  { g  |  ( g : ( M ... n
) --> A  /\  ps ) }  e.  _V )
1512, 13, 14sylancl 645 . . . . . . . 8  |-  ( ph  ->  { g  |  ( g : ( M ... n ) --> A  /\  ps ) }  e.  _V )
1615ralrimivw 2797 . . . . . . 7  |-  ( ph  ->  A. n  e.  Z  { g  |  ( g : ( M ... n ) --> A  /\  ps ) }  e.  _V )
17 abrexex2g 6024 . . . . . . 7  |-  ( ( Z  e.  _V  /\  A. n  e.  Z  {
g  |  ( g : ( M ... n ) --> A  /\  ps ) }  e.  _V )  ->  { g  |  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) }  e.  _V )
185, 16, 17sylancr 646 . . . . . 6  |-  ( ph  ->  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) }  e.  _V )
192, 18syl5eqel 2527 . . . . 5  |-  ( ph  ->  J  e.  _V )
2019adantr 453 . . . 4  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  J  e.  _V )
21 sdc.7 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2221adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  M  e.  ZZ )
23 uzid 10538 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2422, 23syl 16 . . . . . . 7  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  M  e.  ( ZZ>= `  M )
)
2524, 3syl6eleqr 2534 . . . . . 6  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  M  e.  Z )
26 simprl 734 . . . . . . 7  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  g : { M } --> A )
27 fzsn 11132 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
2822, 27syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  ( M ... M )  =  { M } )
2928feq2d 5616 . . . . . . 7  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
g : ( M ... M ) --> A  <-> 
g : { M }
--> A ) )
3026, 29mpbird 225 . . . . . 6  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  g : ( M ... M ) --> A )
31 simprr 735 . . . . . 6  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  ta )
32 oveq2 6125 . . . . . . . . 9  |-  ( n  =  M  ->  ( M ... n )  =  ( M ... M
) )
3332feq2d 5616 . . . . . . . 8  |-  ( n  =  M  ->  (
g : ( M ... n ) --> A  <-> 
g : ( M ... M ) --> A ) )
34 sdc.3 . . . . . . . 8  |-  ( n  =  M  ->  ( ps 
<->  ta ) )
3533, 34anbi12d 693 . . . . . . 7  |-  ( n  =  M  ->  (
( g : ( M ... n ) --> A  /\  ps )  <->  ( g : ( M ... M ) --> A  /\  ta ) ) )
3635rspcev 3061 . . . . . 6  |-  ( ( M  e.  Z  /\  ( g : ( M ... M ) --> A  /\  ta )
)  ->  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) )
3725, 30, 31, 36syl12anc 1183 . . . . 5  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) )
382abeq2i 2550 . . . . 5  |-  ( g  e.  J  <->  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) )
3937, 38sylibr 205 . . . 4  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  g  e.  J )
403peano2uzs 10569 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  Z  ->  (
k  +  1 )  e.  Z )
4140ad2antlr 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  Z )  /\  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )  ->  (
k  +  1 )  e.  Z )
42 simpr1 964 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  Z )  /\  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )  ->  h : ( M ... ( k  +  1 ) ) --> A )
43 simpr3 966 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  Z )  /\  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )  ->  si )
44 vex 2968 . . . . . . . . . . . . . . . . . . 19  |-  h  e. 
_V
45 ovex 6142 . . . . . . . . . . . . . . . . . . 19  |-  ( k  +  1 )  e. 
_V
46 sdc.5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g  =  h  /\  n  =  ( k  +  1 ) )  ->  ( ps  <->  si )
)
4746a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( g  =  h  /\  n  =  ( k  +  1 ) )  ->  ( ps 
<-> 
si ) ) )
4844, 45, 47sbc2iedv 3245 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( [. h  / 
g ]. [. ( k  +  1 )  /  n ]. ps  <->  si )
)
4948ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  Z )  /\  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )  ->  ( [. h  /  g ]. [. ( k  +  1 )  /  n ]. ps  <->  si ) )
5043, 49mpbird 225 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  Z )  /\  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )  ->  [. h  /  g ]. [. (
k  +  1 )  /  n ]. ps )
51 nfv 1631 . . . . . . . . . . . . . . . . . 18  |-  F/ n  h : ( M ... ( k  +  1 ) ) --> A
52 nfcv 2579 . . . . . . . . . . . . . . . . . . 19  |-  F/_ n h
53 nfsbc1v 3189 . . . . . . . . . . . . . . . . . . 19  |-  F/ n [. ( k  +  1 )  /  n ]. ps
5452, 53nfsbc 3191 . . . . . . . . . . . . . . . . . 18  |-  F/ n [. h  /  g ]. [. ( k  +  1 )  /  n ]. ps
5551, 54nfan 1849 . . . . . . . . . . . . . . . . 17  |-  F/ n
( h : ( M ... ( k  +  1 ) ) --> A  /\  [. h  /  g ]. [. (
k  +  1 )  /  n ]. ps )
56 oveq2 6125 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( k  +  1 )  ->  ( M ... n )  =  ( M ... (
k  +  1 ) ) )
5756feq2d 5616 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( k  +  1 )  ->  (
h : ( M ... n ) --> A  <-> 
h : ( M ... ( k  +  1 ) ) --> A ) )
58 sbceq1a 3180 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( k  +  1 )  ->  ( ps 
<-> 
[. ( k  +  1 )  /  n ]. ps ) )
5958sbcbidv 3227 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( k  +  1 )  ->  ( [. h  /  g ]. ps  <->  [. h  /  g ]. [. ( k  +  1 )  /  n ]. ps ) )
6057, 59anbi12d 693 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( k  +  1 )  ->  (
( h : ( M ... n ) --> A  /\  [. h  /  g ]. ps ) 
<->  ( h : ( M ... ( k  +  1 ) ) --> A  /\  [. h  /  g ]. [. (
k  +  1 )  /  n ]. ps ) ) )
6155, 60rspce 3056 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  +  1 )  e.  Z  /\  ( h : ( M ... ( k  +  1 ) ) --> A  /\  [. h  /  g ]. [. (
k  +  1 )  /  n ]. ps ) )  ->  E. n  e.  Z  ( h : ( M ... n ) --> A  /\  [. h  /  g ]. ps ) )
6241, 42, 50, 61syl12anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  Z )  /\  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )  ->  E. n  e.  Z  ( h : ( M ... n ) --> A  /\  [. h  /  g ]. ps ) )
632eleq2i 2507 . . . . . . . . . . . . . . . 16  |-  ( h  e.  J  <->  h  e.  { g  |  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) } )
64 nfcv 2579 . . . . . . . . . . . . . . . . . 18  |-  F/_ g Z
65 nfv 1631 . . . . . . . . . . . . . . . . . . 19  |-  F/ g  h : ( M ... n ) --> A
66 nfsbc1v 3189 . . . . . . . . . . . . . . . . . . 19  |-  F/ g
[. h  /  g ]. ps
6765, 66nfan 1849 . . . . . . . . . . . . . . . . . 18  |-  F/ g ( h : ( M ... n ) --> A  /\  [. h  /  g ]. ps )
6864, 67nfrex 2768 . . . . . . . . . . . . . . . . 17  |-  F/ g E. n  e.  Z  ( h : ( M ... n ) --> A  /\  [. h  /  g ]. ps )
69 feq1 5611 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  h  ->  (
g : ( M ... n ) --> A  <-> 
h : ( M ... n ) --> A ) )
70 sbceq1a 3180 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  h  ->  ( ps 
<-> 
[. h  /  g ]. ps ) )
7169, 70anbi12d 693 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  h  ->  (
( g : ( M ... n ) --> A  /\  ps )  <->  ( h : ( M ... n ) --> A  /\  [. h  / 
g ]. ps ) ) )
7271rexbidv 2733 . . . . . . . . . . . . . . . . 17  |-  ( g  =  h  ->  ( E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps )  <->  E. n  e.  Z  ( h : ( M ... n ) --> A  /\  [. h  / 
g ]. ps ) ) )
7368, 44, 72elabf 3090 . . . . . . . . . . . . . . . 16  |-  ( h  e.  { g  |  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) } 
<->  E. n  e.  Z  ( h : ( M ... n ) --> A  /\  [. h  /  g ]. ps ) )
7463, 73bitri 242 . . . . . . . . . . . . . . 15  |-  ( h  e.  J  <->  E. n  e.  Z  ( h : ( M ... n ) --> A  /\  [. h  /  g ]. ps ) )
7562, 74sylibr 205 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  Z )  /\  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )  ->  h  e.  J )
7675ex 425 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )  ->  h  e.  J )
)
7776rexlimdva 2837 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. k  e.  Z  ( h : ( M ... (
k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )  ->  h  e.  J ) )
7877abssdv 3406 . . . . . . . . . . 11  |-  ( ph  ->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  C_  J
)
7978ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  x  e.  J )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } 
C_  J )
8019ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  x  e.  J )  ->  J  e.  _V )
81 elpw2g 4398 . . . . . . . . . . 11  |-  ( J  e.  _V  ->  ( { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  ~P J 
<->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  C_  J
) )
8280, 81syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  x  e.  J )  ->  ( { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  ~P J 
<->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  C_  J
) )
8379, 82mpbird 225 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  x  e.  J )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  ~P J )
84 oveq2 6125 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( M ... n )  =  ( M ... k
) )
8584feq2d 5616 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
g : ( M ... n ) --> A  <-> 
g : ( M ... k ) --> A ) )
86 sdc.4 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  ( ps 
<->  th ) )
8785, 86anbi12d 693 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
( g : ( M ... n ) --> A  /\  ps )  <->  ( g : ( M ... k ) --> A  /\  th ) ) )
8887cbvrexv 2942 . . . . . . . . . . . . . . . 16  |-  ( E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps )  <->  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) )
89 sdc.9 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  Z )  ->  (
( g : ( M ... k ) --> A  /\  th )  ->  E. h ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
9089reximdva 2825 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E. k  e.  Z  ( g : ( M ... k
) --> A  /\  th )  ->  E. k  e.  Z  E. h ( h : ( M ... (
k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k ) )  /\  si )
) )
91 rexcom4 2984 . . . . . . . . . . . . . . . . 17  |-  ( E. k  e.  Z  E. h ( h : ( M ... (
k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k ) )  /\  si )  <->  E. h E. k  e.  Z  ( h : ( M ... (
k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k ) )  /\  si )
)
9290, 91syl6ib 219 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. k  e.  Z  ( g : ( M ... k
) --> A  /\  th )  ->  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
9388, 92syl5bi 210 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E. n  e.  Z  ( g : ( M ... n
) --> A  /\  ps )  ->  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
9493ss2abdv 3405 . . . . . . . . . . . . . 14  |-  ( ph  ->  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) } 
C_  { g  |  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) } )
952, 94syl5eqss 3381 . . . . . . . . . . . . 13  |-  ( ph  ->  J  C_  { g  |  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) } )
9695sselda 3337 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  J )  ->  x  e.  { g  |  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k ) )  /\  si ) } )
97 vex 2968 . . . . . . . . . . . . 13  |-  x  e. 
_V
98 eqeq1 2449 . . . . . . . . . . . . . . . 16  |-  ( g  =  x  ->  (
g  =  ( h  |`  ( M ... k
) )  <->  x  =  ( h  |`  ( M ... k ) ) ) )
99983anbi2d 1260 . . . . . . . . . . . . . . 15  |-  ( g  =  x  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k ) )  /\  si )  <->  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
10099rexbidv 2733 . . . . . . . . . . . . . 14  |-  ( g  =  x  ->  ( E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k ) )  /\  si )  <->  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
101100exbidv 1638 . . . . . . . . . . . . 13  |-  ( g  =  x  ->  ( E. h E. k  e.  Z  ( h : ( M ... (
k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k ) )  /\  si )  <->  E. h E. k  e.  Z  ( h : ( M ... (
k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )
) )
10297, 101elab 3091 . . . . . . . . . . . 12  |-  ( x  e.  { g  |  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) }  <->  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) )
10396, 102sylib 190 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  J )  ->  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )
104 abn0 3634 . . . . . . . . . . 11  |-  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  =/=  (/)  <->  E. h E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) )
105103, 104sylibr 205 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  J )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  =/=  (/) )
106105adantlr 697 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  x  e.  J )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  =/=  (/) )
107 eldifsn 3956 . . . . . . . . 9  |-  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  e.  ( ~P J  \  { (/) } )  <->  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  ~P J  /\  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  =/=  (/) ) )
10883, 106, 107sylanbrc 647 . . . . . . . 8  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  x  e.  J )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  ( ~P J  \  { (/) } ) )
109108adantrl 698 . . . . . . 7  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( w  e.  Z  /\  x  e.  J ) )  ->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  ( ~P J  \  { (/)
} ) )
110109ralrimivva 2805 . . . . . 6  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  A. w  e.  Z  A. x  e.  J  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  ( ~P J  \  { (/) } ) )
111 sdc.11 . . . . . . 7  |-  F  =  ( w  e.  Z ,  x  e.  J  |->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )
112111fmpt2 6454 . . . . . 6  |-  ( A. w  e.  Z  A. x  e.  J  {
h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  e.  ( ~P J  \  { (/) } )  <->  F : ( Z  X.  J ) --> ( ~P J  \  { (/)
} ) )
113110, 112sylib 190 . . . . 5  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  F : ( Z  X.  J ) --> ( ~P J  \  { (/) } ) )
114 iftrue 3773 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  if ( M  e.  ZZ ,  M ,  0 )  =  M )
11521, 114syl 16 . . . . . . . . . 10  |-  ( ph  ->  if ( M  e.  ZZ ,  M , 
0 )  =  M )
116115fveq2d 5767 . . . . . . . . 9  |-  ( ph  ->  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  =  ( ZZ>= `  M ) )
117116, 3syl6eqr 2493 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  =  Z )
118117xpeq1d 4936 . . . . . . 7  |-  ( ph  ->  ( ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  X.  J )  =  ( Z  X.  J ) )
119118feq2d 5616 . . . . . 6  |-  ( ph  ->  ( F : ( ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  X.  J ) --> ( ~P J  \  { (/) } )  <->  F :
( Z  X.  J
) --> ( ~P J  \  { (/) } ) ) )
120119biimpar 473 . . . . 5  |-  ( (
ph  /\  F :
( Z  X.  J
) --> ( ~P J  \  { (/) } ) )  ->  F : ( ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  X.  J ) --> ( ~P J  \  { (/) } ) )
121113, 120syldan 458 . . . 4  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  F : ( ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  X.  J ) --> ( ~P J  \  { (/) } ) )
122 0z 10331 . . . . . 6  |-  0  e.  ZZ
123122elimel 3820 . . . . 5  |-  if ( M  e.  ZZ ,  M ,  0 )  e.  ZZ
124 eqid 2443 . . . . 5  |-  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  =  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )
125123, 124axdc4uz 11360 . . . 4  |-  ( ( J  e.  _V  /\  g  e.  J  /\  F : ( ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) )  X.  J ) --> ( ~P J  \  { (/) } ) )  ->  E. j ( j : ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) --> J  /\  (
j `  if ( M  e.  ZZ ,  M ,  0 ) )  =  g  /\  A. m  e.  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )
12620, 39, 121, 125syl3anc 1185 . . 3  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  E. j
( j : (
ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) --> J  /\  ( j `
 if ( M  e.  ZZ ,  M ,  0 ) )  =  g  /\  A. m  e.  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )
12722, 114syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  if ( M  e.  ZZ ,  M ,  0 )  =  M )
128127fveq2d 5767 . . . . . . . . 9  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  ( ZZ>=
`  if ( M  e.  ZZ ,  M ,  0 ) )  =  ( ZZ>= `  M
) )
129128, 3syl6eqr 2493 . . . . . . . 8  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  ( ZZ>=
`  if ( M  e.  ZZ ,  M ,  0 ) )  =  Z )
130129feq2d 5616 . . . . . . 7  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
j : ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) --> J  <->  j : Z
--> J ) )
13188abbii 2555 . . . . . . . . 9  |-  { g  |  E. n  e.  Z  ( g : ( M ... n
) --> A  /\  ps ) }  =  {
g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }
1322, 131eqtri 2463 . . . . . . . 8  |-  J  =  { g  |  E. k  e.  Z  (
g : ( M ... k ) --> A  /\  th ) }
133 feq3 5613 . . . . . . . 8  |-  ( J  =  { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  ->  ( j : Z --> J  <->  j : Z
--> { g  |  E. k  e.  Z  (
g : ( M ... k ) --> A  /\  th ) } ) )
134132, 133ax-mp 5 . . . . . . 7  |-  ( j : Z --> J  <->  j : Z
--> { g  |  E. k  e.  Z  (
g : ( M ... k ) --> A  /\  th ) } )
135130, 134syl6bb 254 . . . . . 6  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
j : ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) --> J  <->  j : Z
--> { g  |  E. k  e.  Z  (
g : ( M ... k ) --> A  /\  th ) } ) )
136127fveq2d 5767 . . . . . . 7  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
j `  if ( M  e.  ZZ ,  M ,  0 ) )  =  ( j `
 M ) )
137136eqeq1d 2451 . . . . . 6  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
( j `  if ( M  e.  ZZ ,  M ,  0 ) )  =  g  <->  ( j `  M )  =  g ) )
138129raleqdv 2917 . . . . . 6  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  ( A. m  e.  ( ZZ>=
`  if ( M  e.  ZZ ,  M ,  0 ) ) ( j `  (
m  +  1 ) )  e.  ( m F ( j `  m ) )  <->  A. m  e.  Z  ( j `  ( m  +  1 ) )  e.  ( m F ( j `
 m ) ) ) )
139135, 137, 1383anbi123d 1255 . . . . 5  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
( j : (
ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) --> J  /\  ( j `
 if ( M  e.  ZZ ,  M ,  0 ) )  =  g  /\  A. m  e.  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) )  <->  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) ) )
140 sdc.2 . . . . . . 7  |-  ( g  =  ( f  |`  ( M ... n ) )  ->  ( ps  <->  ch ) )
1417ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  A  e.  V )
14221ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  M  e.  ZZ )
1431ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  E. g
( g : { M } --> A  /\  ta ) )
144 simpll 732 . . . . . . . 8  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  ph )
145144, 89sylan 459 . . . . . . 7  |-  ( ( ( ( ph  /\  ( g : { M } --> A  /\  ta ) )  /\  (
j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k
) --> A  /\  th ) }  /\  (
j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1 ) )  e.  ( m F ( j `
 m ) ) ) )  /\  k  e.  Z )  ->  (
( g : ( M ... k ) --> A  /\  th )  ->  E. h ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
146 nfv 1631 . . . . . . . 8  |-  F/ k ( ph  /\  (
g : { M }
--> A  /\  ta )
)
147 nfcv 2579 . . . . . . . . . 10  |-  F/_ k
j
148 nfcv 2579 . . . . . . . . . 10  |-  F/_ k Z
149 nfre1 2769 . . . . . . . . . . 11  |-  F/ k E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th )
150149nfab 2583 . . . . . . . . . 10  |-  F/_ k { g  |  E. k  e.  Z  (
g : ( M ... k ) --> A  /\  th ) }
151147, 148, 150nff 5624 . . . . . . . . 9  |-  F/ k  j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k
) --> A  /\  th ) }
152 nfv 1631 . . . . . . . . 9  |-  F/ k ( j `  M
)  =  g
153 nfcv 2579 . . . . . . . . . . . 12  |-  F/_ k
m
154132, 150nfcxfr 2576 . . . . . . . . . . . . . 14  |-  F/_ k J
155 nfre1 2769 . . . . . . . . . . . . . . 15  |-  F/ k E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )
156155nfab 2583 . . . . . . . . . . . . . 14  |-  F/_ k { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }
157148, 154, 156nfmpt2 6178 . . . . . . . . . . . . 13  |-  F/_ k
( w  e.  Z ,  x  e.  J  |->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )
158111, 157nfcxfr 2576 . . . . . . . . . . . 12  |-  F/_ k F
159 nfcv 2579 . . . . . . . . . . . 12  |-  F/_ k
( j `  m
)
160153, 158, 159nfov 6140 . . . . . . . . . . 11  |-  F/_ k
( m F ( j `  m ) )
161160nfel2 2591 . . . . . . . . . 10  |-  F/ k ( j `  (
m  +  1 ) )  e.  ( m F ( j `  m ) )
162148, 161nfral 2766 . . . . . . . . 9  |-  F/ k A. m  e.  Z  ( j `  (
m  +  1 ) )  e.  ( m F ( j `  m ) )
163151, 152, 162nf3an 1852 . . . . . . . 8  |-  F/ k ( j : Z --> { g  |  E. k  e.  Z  (
g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) )
164146, 163nfan 1849 . . . . . . 7  |-  F/ k ( ( ph  /\  ( g : { M } --> A  /\  ta ) )  /\  (
j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k
) --> A  /\  th ) }  /\  (
j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1 ) )  e.  ( m F ( j `
 m ) ) ) )
165 simpr1 964 . . . . . . . 8  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) } )
166165, 134sylibr 205 . . . . . . 7  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  j : Z --> J )
16726adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  g : { M } --> A )
168 simpr2 965 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  (
j `  M )  =  g )
169142, 27syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  ( M ... M )  =  { M } )
170168, 169feq12d 5617 . . . . . . . 8  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  (
( j `  M
) : ( M ... M ) --> A  <-> 
g : { M }
--> A ) )
171167, 170mpbird 225 . . . . . . 7  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  (
j `  M ) : ( M ... M ) --> A )
172 simpr3 966 . . . . . . . 8  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  A. m  e.  Z  ( j `  ( m  +  1 ) )  e.  ( m F ( j `
 m ) ) )
173 oveq1 6124 . . . . . . . . . . 11  |-  ( m  =  w  ->  (
m  +  1 )  =  ( w  + 
1 ) )
174173fveq2d 5767 . . . . . . . . . 10  |-  ( m  =  w  ->  (
j `  ( m  +  1 ) )  =  ( j `  ( w  +  1
) ) )
175 id 21 . . . . . . . . . . 11  |-  ( m  =  w  ->  m  =  w )
176 fveq2 5763 . . . . . . . . . . 11  |-  ( m  =  w  ->  (
j `  m )  =  ( j `  w ) )
177175, 176oveq12d 6135 . . . . . . . . . 10  |-  ( m  =  w  ->  (
m F ( j `
 m ) )  =  ( w F ( j `  w
) ) )
178174, 177eleq12d 2511 . . . . . . . . 9  |-  ( m  =  w  ->  (
( j `  (
m  +  1 ) )  e.  ( m F ( j `  m ) )  <->  ( j `  ( w  +  1 ) )  e.  ( w F ( j `
 w ) ) ) )
179178rspccva 3060 . . . . . . . 8  |-  ( ( A. m  e.  Z  ( j `  (
m  +  1 ) )  e.  ( m F ( j `  m ) )  /\  w  e.  Z )  ->  ( j `  (
w  +  1 ) )  e.  ( w F ( j `  w ) ) )
180172, 179sylan 459 . . . . . . 7  |-  ( ( ( ( ph  /\  ( g : { M } --> A  /\  ta ) )  /\  (
j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k
) --> A  /\  th ) }  /\  (
j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1 ) )  e.  ( m F ( j `
 m ) ) ) )  /\  w  e.  Z )  ->  (
j `  ( w  +  1 ) )  e.  ( w F ( j `  w
) ) )
1813, 140, 34, 86, 46, 141, 142, 143, 145, 2, 111, 164, 166, 171, 180sdclem2 26488 . . . . . 6  |-  ( ( ( ph  /\  (
g : { M }
--> A  /\  ta )
)  /\  ( j : Z --> { g  |  E. k  e.  Z  ( g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) ) )  ->  E. f
( f : Z --> A  /\  A. n  e.  Z  ch ) )
182181ex 425 . . . . 5  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
( j : Z --> { g  |  E. k  e.  Z  (
g : ( M ... k ) --> A  /\  th ) }  /\  ( j `  M )  =  g  /\  A. m  e.  Z  ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) )  ->  E. f
( f : Z --> A  /\  A. n  e.  Z  ch ) ) )
183139, 182sylbid 208 . . . 4  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  (
( j : (
ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) --> J  /\  ( j `
 if ( M  e.  ZZ ,  M ,  0 ) )  =  g  /\  A. m  e.  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) )  ->  E. f
( f : Z --> A  /\  A. n  e.  Z  ch ) ) )
184183exlimdv 1648 . . 3  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  ( E. j ( j : ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) --> J  /\  (
j `  if ( M  e.  ZZ ,  M ,  0 ) )  =  g  /\  A. m  e.  ( ZZ>= `  if ( M  e.  ZZ ,  M ,  0 ) ) ( j `  ( m  +  1
) )  e.  ( m F ( j `
 m ) ) )  ->  E. f
( f : Z --> A  /\  A. n  e.  Z  ch ) ) )
185126, 184mpd 15 . 2  |-  ( (
ph  /\  ( g : { M } --> A  /\  ta ) )  ->  E. f
( f : Z --> A  /\  A. n  e.  Z  ch ) )
1861, 185exlimddv 1650 1  |-  ( ph  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1654    e. wcel 1728   {cab 2429    =/= wne 2606   A.wral 2712   E.wrex 2713   _Vcvv 2965   [.wsbc 3170    \ cdif 3306    C_ wss 3309   (/)c0 3616   ifcif 3767   ~Pcpw 3828   {csn 3843    X. cxp 4911    |` cres 4915   -->wf 5485   ` cfv 5489  (class class class)co 6117    e. cmpt2 6119    ^m cmap 7054   0cc0 9028   1c1 9029    + caddc 9031   ZZcz 10320   ZZ>=cuz 10526   ...cfz 11081
This theorem is referenced by:  sdc  26490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-inf2 7632  ax-dc 8364  ax-cnex 9084  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-riota 6585  df-recs 6669  df-rdg 6704  df-1o 6760  df-er 6941  df-map 7056  df-en 7146  df-dom 7147  df-sdom 7148  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-nn 10039  df-n0 10260  df-z 10321  df-uz 10527  df-fz 11082
  Copyright terms: Public domain W3C validator