MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomsdomcardi Unicode version

Theorem sdomsdomcardi 7604
Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
sdomsdomcardi  |-  ( A 
~<  ( card `  B
)  ->  A  ~<  B )

Proof of Theorem sdomsdomcardi
StepHypRef Expression
1 sdom0 6993 . . . . 5  |-  -.  A  ~< 
(/)
2 ndmfv 5552 . . . . . 6  |-  ( -.  B  e.  dom  card  -> 
( card `  B )  =  (/) )
32breq2d 4035 . . . . 5  |-  ( -.  B  e.  dom  card  -> 
( A  ~<  ( card `  B )  <->  A  ~<  (/) ) )
41, 3mtbiri 294 . . . 4  |-  ( -.  B  e.  dom  card  ->  -.  A  ~<  ( card `  B ) )
54con4i 122 . . 3  |-  ( A 
~<  ( card `  B
)  ->  B  e.  dom  card )
6 cardid2 7586 . . 3  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
75, 6syl 15 . 2  |-  ( A 
~<  ( card `  B
)  ->  ( card `  B )  ~~  B
)
8 sdomentr 6995 . 2  |-  ( ( A  ~<  ( card `  B )  /\  ( card `  B )  ~~  B )  ->  A  ~<  B )
97, 8mpdan 649 1  |-  ( A 
~<  ( card `  B
)  ->  A  ~<  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1684   (/)c0 3455   class class class wbr 4023   dom cdm 4689   ` cfv 5255    ~~ cen 6860    ~< csdm 6862   cardccrd 7568
This theorem is referenced by:  sdomsdomcard  8182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-card 7572
  Copyright terms: Public domain W3C validator