MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectco Structured version   Unicode version

Theorem sectco 13987
Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectco.b  |-  B  =  ( Base `  C
)
sectco.o  |-  .x.  =  (comp `  C )
sectco.s  |-  S  =  (Sect `  C )
sectco.c  |-  ( ph  ->  C  e.  Cat )
sectco.x  |-  ( ph  ->  X  e.  B )
sectco.y  |-  ( ph  ->  Y  e.  B )
sectco.z  |-  ( ph  ->  Z  e.  B )
sectco.1  |-  ( ph  ->  F ( X S Y ) G )
sectco.2  |-  ( ph  ->  H ( Y S Z ) K )
Assertion
Ref Expression
sectco  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K ) )

Proof of Theorem sectco
StepHypRef Expression
1 sectco.b . . . 4  |-  B  =  ( Base `  C
)
2 eqid 2438 . . . 4  |-  (  Hom  `  C )  =  (  Hom  `  C )
3 sectco.o . . . 4  |-  .x.  =  (comp `  C )
4 sectco.c . . . 4  |-  ( ph  ->  C  e.  Cat )
5 sectco.x . . . 4  |-  ( ph  ->  X  e.  B )
6 sectco.z . . . 4  |-  ( ph  ->  Z  e.  B )
7 sectco.y . . . 4  |-  ( ph  ->  Y  e.  B )
8 sectco.1 . . . . . . 7  |-  ( ph  ->  F ( X S Y ) G )
9 eqid 2438 . . . . . . . 8  |-  ( Id
`  C )  =  ( Id `  C
)
10 sectco.s . . . . . . . 8  |-  S  =  (Sect `  C )
111, 2, 3, 9, 10, 4, 5, 7issect 13984 . . . . . . 7  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X (  Hom  `  C
) Y )  /\  G  e.  ( Y
(  Hom  `  C ) X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  ( ( Id `  C
) `  X )
) ) )
128, 11mpbid 203 . . . . . 6  |-  ( ph  ->  ( F  e.  ( X (  Hom  `  C
) Y )  /\  G  e.  ( Y
(  Hom  `  C ) X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  ( ( Id `  C
) `  X )
) )
1312simp1d 970 . . . . 5  |-  ( ph  ->  F  e.  ( X (  Hom  `  C
) Y ) )
14 sectco.2 . . . . . . 7  |-  ( ph  ->  H ( Y S Z ) K )
151, 2, 3, 9, 10, 4, 7, 6issect 13984 . . . . . . 7  |-  ( ph  ->  ( H ( Y S Z ) K  <-> 
( H  e.  ( Y (  Hom  `  C
) Z )  /\  K  e.  ( Z
(  Hom  `  C ) Y )  /\  ( K ( <. Y ,  Z >.  .x.  Y ) H )  =  ( ( Id `  C
) `  Y )
) ) )
1614, 15mpbid 203 . . . . . 6  |-  ( ph  ->  ( H  e.  ( Y (  Hom  `  C
) Z )  /\  K  e.  ( Z
(  Hom  `  C ) Y )  /\  ( K ( <. Y ,  Z >.  .x.  Y ) H )  =  ( ( Id `  C
) `  Y )
) )
1716simp1d 970 . . . . 5  |-  ( ph  ->  H  e.  ( Y (  Hom  `  C
) Z ) )
181, 2, 3, 4, 5, 7, 6, 13, 17catcocl 13915 . . . 4  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X (  Hom  `  C ) Z ) )
1916simp2d 971 . . . 4  |-  ( ph  ->  K  e.  ( Z (  Hom  `  C
) Y ) )
2012simp2d 971 . . . 4  |-  ( ph  ->  G  e.  ( Y (  Hom  `  C
) X ) )
211, 2, 3, 4, 5, 6, 7, 18, 19, 5, 20catass 13916 . . 3  |-  ( ph  ->  ( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( G ( <. X ,  Y >.  .x. 
X ) ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
2216simp3d 972 . . . . . 6  |-  ( ph  ->  ( K ( <. Y ,  Z >.  .x. 
Y ) H )  =  ( ( Id
`  C ) `  Y ) )
2322oveq1d 6099 . . . . 5  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
Y ) H ) ( <. X ,  Y >.  .x.  Y ) F )  =  ( ( ( Id `  C
) `  Y )
( <. X ,  Y >.  .x.  Y ) F ) )
241, 2, 3, 4, 5, 7, 6, 13, 17, 7, 19catass 13916 . . . . 5  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
Y ) H ) ( <. X ,  Y >.  .x.  Y ) F )  =  ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) )
251, 2, 9, 4, 5, 3, 7, 13catlid 13913 . . . . 5  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F )
2623, 24, 253eqtr3d 2478 . . . 4  |-  ( ph  ->  ( K ( <. X ,  Z >.  .x. 
Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  F )
2726oveq2d 6100 . . 3  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
X ) ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) )  =  ( G (
<. X ,  Y >.  .x. 
X ) F ) )
2812simp3d 972 . . 3  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
X ) F )  =  ( ( Id
`  C ) `  X ) )
2921, 27, 283eqtrd 2474 . 2  |-  ( ph  ->  ( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( ( Id `  C ) `  X
) )
301, 2, 3, 4, 6, 7, 5, 19, 20catcocl 13915 . . 3  |-  ( ph  ->  ( G ( <. Z ,  Y >.  .x. 
X ) K )  e.  ( Z (  Hom  `  C ) X ) )
311, 2, 3, 9, 10, 4, 5, 6, 18, 30issect2 13985 . 2  |-  ( ph  ->  ( ( H (
<. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K )  <-> 
( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( ( Id `  C ) `  X
) ) )
3229, 31mpbird 225 1  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726   <.cop 3819   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474    Hom chom 13545  compcco 13546   Catccat 13894   Idccid 13895  Sectcsect 13975
This theorem is referenced by:  invco  14001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-cat 13898  df-cid 13899  df-sect 13978
  Copyright terms: Public domain W3C validator