MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectmon Structured version   Unicode version

Theorem sectmon 14008
Description: If  F is a section of  G, then  F is a monomorphism. A monomorphism that arises from a section is also known as a split monomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
sectmon.b  |-  B  =  ( Base `  C
)
sectmon.m  |-  M  =  (Mono `  C )
sectmon.s  |-  S  =  (Sect `  C )
sectmon.c  |-  ( ph  ->  C  e.  Cat )
sectmon.x  |-  ( ph  ->  X  e.  B )
sectmon.y  |-  ( ph  ->  Y  e.  B )
sectmon.1  |-  ( ph  ->  F ( X S Y ) G )
Assertion
Ref Expression
sectmon  |-  ( ph  ->  F  e.  ( X M Y ) )

Proof of Theorem sectmon
Dummy variables  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectmon.1 . . . 4  |-  ( ph  ->  F ( X S Y ) G )
2 sectmon.b . . . . 5  |-  B  =  ( Base `  C
)
3 eqid 2438 . . . . 5  |-  (  Hom  `  C )  =  (  Hom  `  C )
4 eqid 2438 . . . . 5  |-  (comp `  C )  =  (comp `  C )
5 eqid 2438 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
6 sectmon.s . . . . 5  |-  S  =  (Sect `  C )
7 sectmon.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
8 sectmon.x . . . . 5  |-  ( ph  ->  X  e.  B )
9 sectmon.y . . . . 5  |-  ( ph  ->  Y  e.  B )
102, 3, 4, 5, 6, 7, 8, 9issect 13984 . . . 4  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X (  Hom  `  C
) Y )  /\  G  e.  ( Y
(  Hom  `  C ) X )  /\  ( G ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) ) )
111, 10mpbid 203 . . 3  |-  ( ph  ->  ( F  e.  ( X (  Hom  `  C
) Y )  /\  G  e.  ( Y
(  Hom  `  C ) X )  /\  ( G ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) )
1211simp1d 970 . 2  |-  ( ph  ->  F  e.  ( X (  Hom  `  C
) Y ) )
13 oveq2 6092 . . . . 5  |-  ( ( F ( <. x ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C ) Y ) h )  ->  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) g ) )  =  ( G ( <.
x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) h ) ) )
1411simp3d 972 . . . . . . . . 9  |-  ( ph  ->  ( G ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
1514ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( G (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
1615oveq1d 6099 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) g )  =  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) g ) )
177ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  C  e.  Cat )
18 simplr 733 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  x  e.  B
)
198ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  X  e.  B
)
209ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  Y  e.  B
)
21 simprl 734 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  g  e.  ( x (  Hom  `  C
) X ) )
2212ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  F  e.  ( X (  Hom  `  C
) Y ) )
2311simp2d 971 . . . . . . . . 9  |-  ( ph  ->  G  e.  ( Y (  Hom  `  C
) X ) )
2423ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  G  e.  ( Y (  Hom  `  C
) X ) )
252, 3, 4, 17, 18, 19, 20, 21, 22, 19, 24catass 13916 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) g )  =  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) g ) ) )
262, 3, 5, 17, 18, 4, 19, 21catlid 13913 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) g )  =  g )
2716, 25, 263eqtr3d 2478 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) g ) )  =  g )
2815oveq1d 6099 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) h )  =  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) h ) )
29 simprr 735 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  h  e.  ( x (  Hom  `  C
) X ) )
302, 3, 4, 17, 18, 19, 20, 29, 22, 19, 24catass 13916 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( G ( <. X ,  Y >. (comp `  C ) X ) F ) ( <. x ,  X >. (comp `  C ) X ) h )  =  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) h ) ) )
312, 3, 5, 17, 18, 4, 19, 29catlid 13913 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( ( Id `  C ) `
 X ) (
<. x ,  X >. (comp `  C ) X ) h )  =  h )
3228, 30, 313eqtr3d 2478 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( G (
<. x ,  Y >. (comp `  C ) X ) ( F ( <.
x ,  X >. (comp `  C ) Y ) h ) )  =  h )
3327, 32eqeq12d 2452 . . . . 5  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( G ( <. x ,  Y >. (comp `  C ) X ) ( F ( <. x ,  X >. (comp `  C ) Y ) g ) )  =  ( G ( <. x ,  Y >. (comp `  C ) X ) ( F ( <. x ,  X >. (comp `  C ) Y ) h ) )  <->  g  =  h ) )
3413, 33syl5ib 212 . . . 4  |-  ( ( ( ph  /\  x  e.  B )  /\  (
g  e.  ( x (  Hom  `  C
) X )  /\  h  e.  ( x
(  Hom  `  C ) X ) ) )  ->  ( ( F ( <. x ,  X >. (comp `  C ) Y ) g )  =  ( F (
<. x ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) )
3534ralrimivva 2800 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  A. g  e.  ( x (  Hom  `  C ) X ) A. h  e.  ( x (  Hom  `  C
) X ) ( ( F ( <.
x ,  X >. (comp `  C ) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C
) Y ) h )  ->  g  =  h ) )
3635ralrimiva 2791 . 2  |-  ( ph  ->  A. x  e.  B  A. g  e.  (
x (  Hom  `  C
) X ) A. h  e.  ( x
(  Hom  `  C ) X ) ( ( F ( <. x ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) )
37 sectmon.m . . 3  |-  M  =  (Mono `  C )
382, 3, 4, 37, 7, 8, 9ismon2 13965 . 2  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X (  Hom  `  C
) Y )  /\  A. x  e.  B  A. g  e.  ( x
(  Hom  `  C ) X ) A. h  e.  ( x (  Hom  `  C ) X ) ( ( F (
<. x ,  X >. (comp `  C ) Y ) g )  =  ( F ( <. x ,  X >. (comp `  C
) Y ) h )  ->  g  =  h ) ) ) )
3912, 36, 38mpbir2and 890 1  |-  ( ph  ->  F  e.  ( X M Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   <.cop 3819   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474    Hom chom 13545  compcco 13546   Catccat 13894   Idccid 13895  Monocmon 13959  Sectcsect 13975
This theorem is referenced by:  sectepi  14010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-cat 13898  df-cid 13899  df-mon 13961  df-sect 13978
  Copyright terms: Public domain W3C validator