Mathbox for David A. Wheeler < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  secval Structured version   Unicode version

Theorem secval 28564
 Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
secval

Proof of Theorem secval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5731 . . . 4
21neeq1d 2616 . . 3
32elrab 3094 . 2
4 fveq2 5731 . . . 4
54oveq2d 6100 . . 3
6 df-sec 28561 . . 3
7 ovex 6109 . . 3
85, 6, 7fvmpt 5809 . 2
93, 8sylbir 206 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726   wne 2601  crab 2711  cfv 5457  (class class class)co 6084  cc 8993  cc0 8995  c1 8996   cdiv 9682  ccos 12672  csec 28558 This theorem is referenced by:  seccl  28567  reseccl  28570  recsec  28573  sec0  28577  onetansqsecsq  28578 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-sec 28561
 Copyright terms: Public domain W3C validator