Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq1 Structured version   Unicode version

Theorem seeq1 4557
 Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1 Se Se

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3403 . . 3
2 sess1 4553 . . 3 Se Se
31, 2syl 16 . 2 Se Se
4 eqimss 3402 . . 3
5 sess1 4553 . . 3 Se Se
64, 5syl 16 . 2 Se Se
73, 6impbid 185 1 Se Se
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wceq 1653   wss 3322   Se wse 4542 This theorem is referenced by:  oieq1  7484 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-v 2960  df-in 3329  df-ss 3336  df-br 4216  df-se 4545
 Copyright terms: Public domain W3C validator