Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segcon2 Unicode version

Theorem segcon2 24800
Description: Generalization of axsegcon 24627. This time, we generate an endpoint for a segment on the ray  Q A congruent to  B C and starting at  Q, as opposed to axsegcon 24627, where the segment starts at  A (Contributed by Scott Fenton, 14-Oct-2013.) (Removed unneeded inequality, 15-Oct-2013.)
Assertion
Ref Expression
segcon2  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
Distinct variable groups:    x, Q    x, N    x, A    x, B    x, C

Proof of Theorem segcon2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq1 4042 . . . . 5  |-  ( A  =  Q  ->  ( A  Btwn  <. Q ,  x >.  <-> 
Q  Btwn  <. Q ,  x >. ) )
21orbi1d 683 . . . 4  |-  ( A  =  Q  ->  (
( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  <-> 
( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
32anbi1d 685 . . 3  |-  ( A  =  Q  ->  (
( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. )  <->  ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
43rexbidv 2577 . 2  |-  ( A  =  Q  ->  ( E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. )  <->  E. x  e.  ( EE `  N ) ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. ) ) )
5 simp1 955 . . . . 5  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  N  e.  NN )
6 simp2 956 . . . . . 6  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( Q  e.  ( EE `  N
)  /\  A  e.  ( EE `  N ) ) )
76ancomd 438 . . . . 5  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( A  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )
8 axsegcon 24627 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) ) )  ->  E. a  e.  ( EE `  N ) ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )
95, 7, 7, 8syl3anc 1182 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. a  e.  ( EE `  N ) ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )
109adantr 451 . . 3  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  ->  E. a  e.  ( EE `  N ) ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )
11 simpl1 958 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  ->  N  e.  NN )
12 simpr 447 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  -> 
a  e.  ( EE
`  N ) )
13 simpl2l 1008 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  ->  Q  e.  ( EE `  N ) )
14 simpl3 960 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  -> 
( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
15 axsegcon 24627 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( a  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. a ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
1611, 12, 13, 14, 15syl121anc 1187 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. a ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
1716adantr 451 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. a ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
18 anass 630 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  x  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) ) )
19 df-3an 936 . . . . . . . . . . . . 13  |-  ( ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. )  <-> 
( ( A  =/= 
Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. ) )  /\  Q  Btwn  <. a ,  x >. ) )
20 simpr1 961 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  A  =/=  Q )
21 simpr2r 1015 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  <. Q , 
a >.Cgr <. A ,  Q >. )
22 simpl1 958 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  N  e.  NN )
23 simpl2l 1008 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  Q  e.  ( EE `  N
) )
24 simprl 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  a  e.  ( EE `  N
) )
25 simpl2r 1009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
26 cgrdegen 24699 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  a  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) ) )  ->  ( <. Q , 
a >.Cgr <. A ,  Q >.  ->  ( Q  =  a  <->  A  =  Q
) ) )
2722, 23, 24, 25, 23, 26syl122anc 1191 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( <. Q ,  a >.Cgr <. A ,  Q >.  -> 
( Q  =  a  <-> 
A  =  Q ) ) )
2827adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( <. Q ,  a >.Cgr <. A ,  Q >.  ->  ( Q  =  a  <->  A  =  Q
) ) )
2921, 28mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( Q  =  a  <->  A  =  Q
) )
3029necon3bid 2494 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( Q  =/=  a  <->  A  =/=  Q
) )
3120, 30mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  =/=  a )
3231necomd 2542 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  a  =/=  Q )
33 simpr2l 1014 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  Btwn  <. A ,  a >. )
3422, 23, 25, 24, 33btwncomand 24710 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  Btwn  <.
a ,  A >. )
35 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  Btwn  <.
a ,  x >. )
36 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  x  e.  ( EE `  N
) )
37 btwnconn2 24797 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( a  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( ( a  =/= 
Q  /\  Q  Btwn  <.
a ,  A >.  /\  Q  Btwn  <. a ,  x >. )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
3822, 24, 23, 25, 36, 37syl122anc 1191 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  (
( a  =/=  Q  /\  Q  Btwn  <. a ,  A >.  /\  Q  Btwn  <.
a ,  x >. )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
3938adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( (
a  =/=  Q  /\  Q  Btwn  <. a ,  A >.  /\  Q  Btwn  <. a ,  x >. )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
4032, 34, 35, 39mp3and 1280 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) )
4119, 40sylan2br 462 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  (
( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )  /\  Q  Btwn  <. a ,  x >. ) )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) )
4241expr 598 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. ) ) )  -> 
( Q  Btwn  <. a ,  x >.  ->  ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
4342anim1d 547 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. ) ) )  -> 
( ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4418, 43sylanb 458 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  x  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  -> 
( ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4544an32s 779 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4645reximdva 2668 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  -> 
( E. x  e.  ( EE `  N
) ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4717, 46mpd 14 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. ) )
4847expr 598 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  A  =/=  Q )  -> 
( ( Q  Btwn  <. A ,  a >.  /\ 
<. Q ,  a >.Cgr <. A ,  Q >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4948an32s 779 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  /\  a  e.  ( EE `  N ) )  -> 
( ( Q  Btwn  <. A ,  a >.  /\ 
<. Q ,  a >.Cgr <. A ,  Q >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
5049rexlimdva 2680 . . 3  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  -> 
( E. a  e.  ( EE `  N
) ( Q  Btwn  <. A ,  a >.  /\ 
<. Q ,  a >.Cgr <. A ,  Q >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
5110, 50mpd 14 . 2  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. ) )
52 simp2l 981 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  Q  e.  ( EE `  N ) )
53 simp3 957 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
54 axsegcon 24627 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
555, 52, 52, 53, 54syl121anc 1187 . . 3  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
56 orc 374 . . . . 5  |-  ( Q 
Btwn  <. Q ,  x >.  ->  ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) )
5756anim1i 551 . . . 4  |-  ( ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
5857reximi 2663 . . 3  |-  ( E. x  e.  ( EE
`  N ) ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. )  ->  E. x  e.  ( EE `  N
) ( ( Q 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
5955, 58syl 15 . 2  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
604, 51, 59pm2.61ne 2534 1  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   <.cop 3656   class class class wbr 4039   ` cfv 5271   NNcn 9762   EEcee 24588    Btwn cbtwn 24589  Cgrccgr 24590
This theorem is referenced by:  seglelin  24811  outsideofeu  24826
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ee 24591  df-btwn 24592  df-cgr 24593  df-ofs 24678  df-ifs 24734  df-cgr3 24735  df-colinear 24736  df-fs 24737
  Copyright terms: Public domain W3C validator