Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segcon2 Unicode version

Theorem segcon2 24728
Description: Generalization of axsegcon 24555. This time, we generate an endpoint for a segment on the ray  Q A congruent to  B C and starting at  Q, as opposed to axsegcon 24555, where the segment starts at  A (Contributed by Scott Fenton, 14-Oct-2013.) (Removed unneeded inequality, 15-Oct-2013.)
Assertion
Ref Expression
segcon2  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
Distinct variable groups:    x, Q    x, N    x, A    x, B    x, C

Proof of Theorem segcon2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq1 4026 . . . . 5  |-  ( A  =  Q  ->  ( A  Btwn  <. Q ,  x >.  <-> 
Q  Btwn  <. Q ,  x >. ) )
21orbi1d 683 . . . 4  |-  ( A  =  Q  ->  (
( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  <-> 
( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
32anbi1d 685 . . 3  |-  ( A  =  Q  ->  (
( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. )  <->  ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
43rexbidv 2564 . 2  |-  ( A  =  Q  ->  ( E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. )  <->  E. x  e.  ( EE `  N ) ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. ) ) )
5 simp1 955 . . . . 5  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  N  e.  NN )
6 simp2 956 . . . . . 6  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( Q  e.  ( EE `  N
)  /\  A  e.  ( EE `  N ) ) )
76ancomd 438 . . . . 5  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( A  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )
8 axsegcon 24555 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) ) )  ->  E. a  e.  ( EE `  N ) ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )
95, 7, 7, 8syl3anc 1182 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. a  e.  ( EE `  N ) ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )
109adantr 451 . . 3  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  ->  E. a  e.  ( EE `  N ) ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )
11 simpl1 958 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  ->  N  e.  NN )
12 simpr 447 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  -> 
a  e.  ( EE
`  N ) )
13 simpl2l 1008 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  ->  Q  e.  ( EE `  N ) )
14 simpl3 960 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  -> 
( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
15 axsegcon 24555 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( a  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. a ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
1611, 12, 13, 14, 15syl121anc 1187 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. a ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
1716adantr 451 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. a ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
18 anass 630 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  x  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) ) )
19 df-3an 936 . . . . . . . . . . . . 13  |-  ( ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. )  <-> 
( ( A  =/= 
Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. ) )  /\  Q  Btwn  <. a ,  x >. ) )
20 simpr1 961 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  A  =/=  Q )
21 simpr2r 1015 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  <. Q , 
a >.Cgr <. A ,  Q >. )
22 simpl1 958 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  N  e.  NN )
23 simpl2l 1008 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  Q  e.  ( EE `  N
) )
24 simprl 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  a  e.  ( EE `  N
) )
25 simpl2r 1009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
26 cgrdegen 24627 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  a  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) ) )  ->  ( <. Q , 
a >.Cgr <. A ,  Q >.  ->  ( Q  =  a  <->  A  =  Q
) ) )
2722, 23, 24, 25, 23, 26syl122anc 1191 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( <. Q ,  a >.Cgr <. A ,  Q >.  -> 
( Q  =  a  <-> 
A  =  Q ) ) )
2827adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( <. Q ,  a >.Cgr <. A ,  Q >.  ->  ( Q  =  a  <->  A  =  Q
) ) )
2921, 28mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( Q  =  a  <->  A  =  Q
) )
3029necon3bid 2481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( Q  =/=  a  <->  A  =/=  Q
) )
3120, 30mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  =/=  a )
3231necomd 2529 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  a  =/=  Q )
33 simpr2l 1014 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  Btwn  <. A ,  a >. )
3422, 23, 25, 24, 33btwncomand 24638 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  Btwn  <.
a ,  A >. )
35 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  Q  Btwn  <.
a ,  x >. )
36 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  x  e.  ( EE `  N
) )
37 btwnconn2 24725 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( a  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( ( a  =/= 
Q  /\  Q  Btwn  <.
a ,  A >.  /\  Q  Btwn  <. a ,  x >. )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
3822, 24, 23, 25, 36, 37syl122anc 1191 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  (
( a  =/=  Q  /\  Q  Btwn  <. a ,  A >.  /\  Q  Btwn  <.
a ,  x >. )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
3938adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( (
a  =/=  Q  /\  Q  Btwn  <. a ,  A >.  /\  Q  Btwn  <. a ,  x >. )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
4032, 34, 35, 39mp3and 1280 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. )  /\  Q  Btwn  <.
a ,  x >. ) )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) )
4119, 40sylan2br 462 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  (
( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) )  /\  Q  Btwn  <. a ,  x >. ) )  ->  ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) )
4241expr 598 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. ) ) )  -> 
( Q  Btwn  <. a ,  x >.  ->  ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) ) )
4342anim1d 547 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( a  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A ,  a
>.  /\  <. Q ,  a
>.Cgr <. A ,  Q >. ) ) )  -> 
( ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4418, 43sylanb 458 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  x  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  -> 
( ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4544an32s 779 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( A 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4645reximdva 2655 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  -> 
( E. x  e.  ( EE `  N
) ( Q  Btwn  <.
a ,  x >.  /\ 
<. Q ,  x >.Cgr <. B ,  C >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4717, 46mpd 14 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  ( A  =/=  Q  /\  ( Q  Btwn  <. A , 
a >.  /\  <. Q , 
a >.Cgr <. A ,  Q >. ) ) )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. ) )
4847expr 598 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  a  e.  ( EE `  N ) )  /\  A  =/=  Q )  -> 
( ( Q  Btwn  <. A ,  a >.  /\ 
<. Q ,  a >.Cgr <. A ,  Q >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
4948an32s 779 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  /\  a  e.  ( EE `  N ) )  -> 
( ( Q  Btwn  <. A ,  a >.  /\ 
<. Q ,  a >.Cgr <. A ,  Q >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
5049rexlimdva 2667 . . 3  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  -> 
( E. a  e.  ( EE `  N
) ( Q  Btwn  <. A ,  a >.  /\ 
<. Q ,  a >.Cgr <. A ,  Q >. )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) ) )
5110, 50mpd 14 . 2  |-  ( ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  A  =/=  Q )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr
<. B ,  C >. ) )
52 simp2l 981 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  Q  e.  ( EE `  N ) )
53 simp3 957 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
54 axsegcon 24555 . . . 4  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
555, 52, 52, 53, 54syl121anc 1187 . . 3  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
56 orc 374 . . . . 5  |-  ( Q 
Btwn  <. Q ,  x >.  ->  ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. ) )
5756anim1i 551 . . . 4  |-  ( ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. )  ->  ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
5857reximi 2650 . . 3  |-  ( E. x  e.  ( EE
`  N ) ( Q  Btwn  <. Q ,  x >.  /\  <. Q ,  x >.Cgr <. B ,  C >. )  ->  E. x  e.  ( EE `  N
) ( ( Q 
Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
5955, 58syl 15 . 2  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( ( Q  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
604, 51, 59pm2.61ne 2521 1  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( ( A  Btwn  <. Q ,  x >.  \/  x  Btwn  <. Q ,  A >. )  /\  <. Q ,  x >.Cgr <. B ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   <.cop 3643   class class class wbr 4023   ` cfv 5255   NNcn 9746   EEcee 24516    Btwn cbtwn 24517  Cgrccgr 24518
This theorem is referenced by:  seglelin  24739  outsideofeu  24754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ee 24519  df-btwn 24520  df-cgr 24521  df-ofs 24606  df-ifs 24662  df-cgr3 24663  df-colinear 24664  df-fs 24665
  Copyright terms: Public domain W3C validator