MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2b Structured version   Unicode version

Theorem selberg2b 21236
Description: Convert eventual boundedness in selberg2 21235 to boundedness on any interval  [ A ,  +oo ). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 25-May-2016.)
Assertion
Ref Expression
selberg2b  |-  E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  <_  c
Distinct variable group:    n, c, x

Proof of Theorem selberg2b
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 9080 . . . . . . 7  |-  1  e.  RR
2 elicopnf 10990 . . . . . . 7  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
31, 2mp1i 12 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
43simprbda 607 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  RR )
54ex 424 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  ->  x  e.  RR ) )
65ssrdv 3346 . . 3  |-  (  T. 
->  ( 1 [,)  +oo )  C_  RR )
71a1i 11 . . 3  |-  (  T. 
->  1  e.  RR )
8 chpcl 20897 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
94, 8syl 16 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (ψ `  x )  e.  RR )
10 1rp 10606 . . . . . . . . . . 11  |-  1  e.  RR+
1110a1i 11 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  e.  RR+ )
123simplbda 608 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  <_  x )
134, 11, 12rpgecld 10673 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  RR+ )
1413relogcld 20508 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( log `  x )  e.  RR )
159, 14remulcld 9106 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  RR )
16 fzfid 11302 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
17 elfznn 11070 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1817adantl 453 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
19 vmacl 20891 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
2018, 19syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
214adantr 452 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
2221, 18nndivred 10038 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
23 chpcl 20897 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
2422, 23syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
2520, 24remulcld 9106 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
2616, 25fsumrecl 12518 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
2715, 26readdcld 9105 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  e.  RR )
2827, 13rerpdivcld 10665 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  RR )
29 2re 10059 . . . . . . 7  |-  2  e.  RR
3029a1i 11 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  2  e.  RR )
3130, 14remulcld 9106 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
2  x.  ( log `  x ) )  e.  RR )
3228, 31resubcld 9455 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  RR )
3332recnd 9104 . . 3  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  CC )
3413ex 424 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  ->  x  e.  RR+ )
)
3534ssrdv 3346 . . . 4  |-  (  T. 
->  ( 1 [,)  +oo )  C_  RR+ )
36 selberg2 21235 . . . . 5  |-  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
3736a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
3835, 37o1res2 12347 . . 3  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
39 chpcl 20897 . . . . . . 7  |-  ( y  e.  RR  ->  (ψ `  y )  e.  RR )
4039ad2antrl 709 . . . . . 6  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
(ψ `  y )  e.  RR )
41 simprl 733 . . . . . . . 8  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
y  e.  RR )
4210a1i 11 . . . . . . . 8  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
1  e.  RR+ )
43 simprr 734 . . . . . . . 8  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
1  <_  y )
4441, 42, 43rpgecld 10673 . . . . . . 7  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
y  e.  RR+ )
4544relogcld 20508 . . . . . 6  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( log `  y
)  e.  RR )
4640, 45remulcld 9106 . . . . 5  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( (ψ `  y
)  x.  ( log `  y ) )  e.  RR )
47 fzfid 11302 . . . . . 6  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( 1 ... ( |_ `  y ) )  e.  Fin )
48 elfznn 11070 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  y
) )  ->  n  e.  NN )
4948adantl 453 . . . . . . . 8  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  n  e.  NN )
5049, 19syl 16 . . . . . . 7  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  (Λ `  n
)  e.  RR )
5141adantr 452 . . . . . . . . 9  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  y  e.  RR )
5251, 49nndivred 10038 . . . . . . . 8  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( y  /  n )  e.  RR )
53 chpcl 20897 . . . . . . . 8  |-  ( ( y  /  n )  e.  RR  ->  (ψ `  ( y  /  n
) )  e.  RR )
5452, 53syl 16 . . . . . . 7  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  (ψ `  (
y  /  n ) )  e.  RR )
5550, 54remulcld 9106 . . . . . 6  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( y  /  n
) ) )  e.  RR )
5647, 55fsumrecl 12518 . . . . 5  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n ) ) )  e.  RR )
5746, 56readdcld 9105 . . . 4  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( ( (ψ `  y )  x.  ( log `  y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) ) )  e.  RR )
5829a1i 11 . . . . 5  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
2  e.  RR )
5958, 45remulcld 9106 . . . 4  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( 2  x.  ( log `  y ) )  e.  RR )
6057, 59readdcld 9105 . . 3  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( ( ( (ψ `  y )  x.  ( log `  y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) )  e.  RR )
6132adantr 452 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  RR )
6261recnd 9104 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  CC )
6362abscld 12228 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  RR )
6428adantr 452 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  e.  RR )
6564recnd 9104 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  e.  CC )
6665abscld 12228 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )  e.  RR )
6731adantr 452 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  e.  RR )
6867recnd 9104 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  e.  CC )
6968abscld 12228 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( 2  x.  ( log `  x ) ) )  e.  RR )
7066, 69readdcld 9105 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )  +  ( abs `  (
2  x.  ( log `  x ) ) ) )  e.  RR )
7160ad2ant2r 728 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  x.  ( log `  y ) )  + 
sum_ n  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n ) ) ) )  +  ( 2  x.  ( log `  y
) ) )  e.  RR )
7265, 68abs2dif2d 12250 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  <_  (
( abs `  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )  +  ( abs `  (
2  x.  ( log `  x ) ) ) ) )
73 simprll 739 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
7473, 39syl 16 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  RR )
7513adantr 452 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
764adantr 452 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
77 simprr 734 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
7876, 73, 77ltled 9211 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
7973, 75, 78rpgecld 10673 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR+ )
8079relogcld 20508 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  RR )
8174, 80remulcld 9106 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  y )  x.  ( log `  y ) )  e.  RR )
8256ad2ant2r 728 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) )  e.  RR )
8381, 82readdcld 9105 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  x.  ( log `  y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n
) ) ) )  e.  RR )
8429a1i 11 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
8584, 80remulcld 9106 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  y
) )  e.  RR )
8676, 8syl 16 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  e.  RR )
8775relogcld 20508 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR )
8886, 87remulcld 9106 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  x.  ( log `  x ) )  e.  RR )
8926adantr 452 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
9088, 89readdcld 9105 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  e.  RR )
91 chpge0 20899 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
9276, 91syl 16 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  x ) )
9312adantr 452 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  x )
9476, 93logge0d 20515 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  x ) )
9586, 87, 92, 94mulge0d 9593 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( (ψ `  x )  x.  ( log `  x
) ) )
96 vmage0 20894 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
9718, 96syl 16 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
98 chpge0 20899 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  0  <_  (ψ `  ( x  /  n ) ) )
9922, 98syl 16 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (ψ `  ( x  /  n
) ) )
10020, 24, 97, 99mulge0d 9593 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )
10116, 25, 100fsumge0 12564 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )
102101adantr 452 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )
10388, 89, 95, 102addge0d 9592 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) )
10490, 75, 103divge0d 10674 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )
10564, 104absidd 12215 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )
10610a1i 11 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  e.  RR+ )
107 chpwordi 20930 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  (ψ `  x )  <_  (ψ `  y ) )
10876, 73, 78, 107syl3anc 1184 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  x
)  <_  (ψ `  y
) )
10975, 79logled 20512 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( x  <_  y  <->  ( log `  x
)  <_  ( log `  y ) ) )
11078, 109mpbid 202 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  <_  ( log `  y ) )
11186, 74, 87, 80, 92, 94, 108, 110lemul12ad 9943 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  x.  ( log `  x ) )  <_  ( (ψ `  y )  x.  ( log `  y ) ) )
112 fzfid 11302 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  y ) )  e. 
Fin )
11348adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  NN )
114113, 19syl 16 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (Λ `  n )  e.  RR )
11576adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  x  e.  RR )
116115, 113nndivred 10038 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( x  /  n )  e.  RR )
117116, 23syl 16 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
118114, 117remulcld 9106 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
119112, 118fsumrecl 12518 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
120113, 96syl 16 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (Λ `  n ) )
121116, 98syl 16 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (ψ `  ( x  /  n
) ) )
122114, 117, 120, 121mulge0d 9593 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )
123 flword2 11210 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  ( |_ `  y )  e.  ( ZZ>= `  ( |_ `  x ) ) )
12476, 73, 78, 123syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( |_ `  y )  e.  (
ZZ>= `  ( |_ `  x ) ) )
125 fzss2 11082 . . . . . . . . . . . 12  |-  ( ( |_ `  y )  e.  ( ZZ>= `  ( |_ `  x ) )  ->  ( 1 ... ( |_ `  x
) )  C_  (
1 ... ( |_ `  y ) ) )
126124, 125syl 16 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  x ) )  C_  ( 1 ... ( |_ `  y ) ) )
127112, 118, 122, 126fsumless 12565 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )
12873adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  y  e.  RR )
129128, 113nndivred 10038 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( y  /  n )  e.  RR )
130129, 53syl 16 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
y  /  n ) )  e.  RR )
131114, 130remulcld 9106 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) )  e.  RR )
132113nnrpd 10637 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  RR+ )
13378adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  x  <_  y
)
134115, 128, 132, 133lediv1dd 10692 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( x  /  n )  <_  (
y  /  n ) )
135 chpwordi 20930 . . . . . . . . . . . . 13  |-  ( ( ( x  /  n
)  e.  RR  /\  ( y  /  n
)  e.  RR  /\  ( x  /  n
)  <_  ( y  /  n ) )  -> 
(ψ `  ( x  /  n ) )  <_ 
(ψ `  ( y  /  n ) ) )
136116, 129, 134, 135syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
x  /  n ) )  <_  (ψ `  (
y  /  n ) ) )
137117, 130, 114, 120, 136lemul2ad 9941 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  <_ 
( (Λ `  n )  x.  (ψ `  ( y  /  n ) ) ) )
138112, 118, 131, 137fsumle 12568 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n ) ) ) )
13989, 119, 82, 127, 138letrd 9217 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n ) ) ) )
14088, 89, 81, 82, 111, 139le2addd 9634 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  <_  ( ( (ψ `  y )  x.  ( log `  y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) ) ) )
14190, 83, 106, 76, 103, 140, 93lediv12ad 10693 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  <_  ( ( ( (ψ `  y )  x.  ( log `  y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n
) ) ) )  /  1 ) )
14283recnd 9104 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
(ψ `  y )  x.  ( log `  y
) )  +  sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n
) ) ) )  e.  CC )
143142div1d 9772 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  y
)  x.  ( log `  y ) )  + 
sum_ n  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n ) ) ) )  /  1 )  =  ( ( (ψ `  y )  x.  ( log `  y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) ) ) )
144141, 143breqtrd 4228 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (
( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  <_  ( ( (ψ `  y )  x.  ( log `  y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) ) ) )
145105, 144eqbrtrd 4224 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )  <_  ( ( (ψ `  y )  x.  ( log `  y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) ) ) )
146 2rp 10607 . . . . . . . . 9  |-  2  e.  RR+
147 rpge0 10614 . . . . . . . . 9  |-  ( 2  e.  RR+  ->  0  <_ 
2 )
148146, 147mp1i 12 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  2 )
14984, 87, 148, 94mulge0d 9593 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( 2  x.  ( log `  x ) ) )
15067, 149absidd 12215 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( 2  x.  ( log `  x ) ) )  =  ( 2  x.  ( log `  x
) ) )
15187, 80, 84, 148, 110lemul2ad 9941 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  <_  (
2  x.  ( log `  y ) ) )
152150, 151eqbrtrd 4224 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( 2  x.  ( log `  x ) ) )  <_  ( 2  x.  ( log `  y
) ) )
15366, 69, 83, 85, 145, 152le2addd 9634 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x ) )  +  ( abs `  (
2  x.  ( log `  x ) ) ) )  <_  ( (
( (ψ `  y
)  x.  ( log `  y ) )  + 
sum_ n  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  (ψ `  ( y  /  n ) ) ) )  +  ( 2  x.  ( log `  y
) ) ) )
15463, 70, 71, 72, 153letrd 9217 . . 3  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  <_  (
( ( (ψ `  y )  x.  ( log `  y ) )  +  sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) ) )
1556, 7, 33, 38, 60, 154o1bddrp 12326 . 2  |-  (  T. 
->  E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  <_  c
)
156155trud 1332 1  |-  E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  <_  c
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    T. wtru 1325    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   RRcr 8979   0cc0 8980   1c1 8981    + caddc 8983    x. cmul 8985    +oocpnf 9107    < clt 9110    <_ cle 9111    - cmin 9281    / cdiv 9667   NNcn 9990   2c2 10039   ZZ>=cuz 10478   RR+crp 10602   [,)cico 10908   ...cfz 11033   |_cfl 11191   abscabs 12029   O ( 1 )co1 12270   sum_csu 12469   logclog 20442  Λcvma 20864  ψcchp 20865
This theorem is referenced by:  chpdifbnd  21239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7469  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-ioo 10910  df-ioc 10911  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-fac 11557  df-bc 11584  df-hash 11609  df-shft 11872  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-limsup 12255  df-clim 12272  df-rlim 12273  df-o1 12274  df-lo1 12275  df-sum 12470  df-ef 12660  df-e 12661  df-sin 12662  df-cos 12663  df-pi 12665  df-dvds 12843  df-gcd 12997  df-prm 13070  df-pc 13201  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-pt 13658  df-prds 13661  df-xrs 13716  df-0g 13717  df-gsum 13718  df-qtop 13723  df-imas 13724  df-xps 13726  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-submnd 14729  df-mulg 14805  df-cntz 15106  df-cmn 15404  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-fbas 16689  df-fg 16690  df-cnfld 16694  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-cld 17073  df-ntr 17074  df-cls 17075  df-nei 17152  df-lp 17190  df-perf 17191  df-cn 17281  df-cnp 17282  df-haus 17369  df-cmp 17440  df-tx 17584  df-hmeo 17777  df-fil 17868  df-fm 17960  df-flim 17961  df-flf 17962  df-xms 18340  df-ms 18341  df-tms 18342  df-cncf 18898  df-limc 19743  df-dv 19744  df-log 20444  df-cxp 20445  df-em 20821  df-cht 20869  df-vma 20870  df-chp 20871  df-ppi 20872  df-mu 20873
  Copyright terms: Public domain W3C validator