MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergb Structured version   Unicode version

Theorem selbergb 21245
Description: Convert eventual boundedness in selberg 21244 to boundedness on  [ 1 , 
+oo ). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selbergb  |-  E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  c
Distinct variable group:    n, c, x

Proof of Theorem selbergb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 9092 . . . . . . 7  |-  1  e.  RR
2 elicopnf 11002 . . . . . . 7  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
31, 2mp1i 12 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
43simprbda 608 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  RR )
54ex 425 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  ->  x  e.  RR ) )
65ssrdv 3356 . . 3  |-  (  T. 
->  ( 1 [,)  +oo )  C_  RR )
71a1i 11 . . 3  |-  (  T. 
->  1  e.  RR )
8 fzfid 11314 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
9 elfznn 11082 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
109adantl 454 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
11 vmacl 20903 . . . . . . . . 9  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1210, 11syl 16 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
1310nnrpd 10649 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
1413relogcld 20520 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
154adantr 453 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
1615, 10nndivred 10050 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
17 chpcl 20909 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
1816, 17syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
1914, 18readdcld 9117 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) )  e.  RR )
2012, 19remulcld 9118 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  e.  RR )
218, 20fsumrecl 12530 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
22 1rp 10618 . . . . . . . 8  |-  1  e.  RR+
2322a1i 11 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  e.  RR+ )
243simplbda 609 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  <_  x )
254, 23, 24rpgecld 10685 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  RR+ )
2621, 25rerpdivcld 10677 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  RR )
27 2re 10071 . . . . . . 7  |-  2  e.  RR
2827a1i 11 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  2  e.  RR )
2925relogcld 20520 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( log `  x )  e.  RR )
3028, 29remulcld 9118 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
2  x.  ( log `  x ) )  e.  RR )
3126, 30resubcld 9467 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  e.  RR )
3231recnd 9116 . . 3  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) )  e.  CC )
3325ex 425 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  ->  x  e.  RR+ )
)
3433ssrdv 3356 . . . 4  |-  (  T. 
->  ( 1 [,)  +oo )  C_  RR+ )
35 selberg 21244 . . . . 5  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
3635a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
3734, 36o1res2 12359 . . 3  |-  (  T. 
->  ( x  e.  ( 1 [,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
38 fzfid 11314 . . . . 5  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( 1 ... ( |_ `  y ) )  e.  Fin )
39 elfznn 11082 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  y
) )  ->  n  e.  NN )
4039adantl 454 . . . . . . 7  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  n  e.  NN )
4140, 11syl 16 . . . . . 6  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  (Λ `  n
)  e.  RR )
4240nnrpd 10649 . . . . . . . 8  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  n  e.  RR+ )
4342relogcld 20520 . . . . . . 7  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( log `  n )  e.  RR )
44 simprl 734 . . . . . . . . . 10  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
y  e.  RR )
4544adantr 453 . . . . . . . . 9  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  y  e.  RR )
4645, 40nndivred 10050 . . . . . . . 8  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( y  /  n )  e.  RR )
47 chpcl 20909 . . . . . . . 8  |-  ( ( y  /  n )  e.  RR  ->  (ψ `  ( y  /  n
) )  e.  RR )
4846, 47syl 16 . . . . . . 7  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  (ψ `  (
y  /  n ) )  e.  RR )
4943, 48readdcld 9117 . . . . . 6  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( y  /  n ) ) )  e.  RR )
5041, 49remulcld 9118 . . . . 5  |-  ( ( (  T.  /\  (
y  e.  RR  /\  1  <_  y ) )  /\  n  e.  ( 1 ... ( |_
`  y ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  e.  RR )
5138, 50fsumrecl 12530 . . . 4  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  e.  RR )
5227a1i 11 . . . . 5  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
2  e.  RR )
5322a1i 11 . . . . . . 7  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
1  e.  RR+ )
54 simprr 735 . . . . . . 7  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
1  <_  y )
5544, 53, 54rpgecld 10685 . . . . . 6  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
y  e.  RR+ )
5655relogcld 20520 . . . . 5  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( log `  y
)  e.  RR )
5752, 56remulcld 9118 . . . 4  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( 2  x.  ( log `  y ) )  e.  RR )
5851, 57readdcld 9117 . . 3  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  +  ( 2  x.  ( log `  y ) ) )  e.  RR )
5931adantr 453 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  RR )
6059recnd 9116 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  CC )
6160abscld 12240 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  e.  RR )
6226adantr 453 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  RR )
6330adantr 453 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  e.  RR )
6462, 63readdcld 9117 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) )  e.  RR )
65 fzfid 11314 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  y ) )  e. 
Fin )
6639adantl 454 . . . . . . . 8  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  NN )
6766, 11syl 16 . . . . . . 7  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (Λ `  n )  e.  RR )
6866nnrpd 10649 . . . . . . . . 9  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  RR+ )
6968relogcld 20520 . . . . . . . 8  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( log `  n
)  e.  RR )
70 simprll 740 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
7170adantr 453 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  y  e.  RR )
7271, 66nndivred 10050 . . . . . . . . 9  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( y  /  n )  e.  RR )
7372, 47syl 16 . . . . . . . 8  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
y  /  n ) )  e.  RR )
7469, 73readdcld 9117 . . . . . . 7  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( y  /  n
) ) )  e.  RR )
7567, 74remulcld 9118 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  e.  RR )
7665, 75fsumrecl 12530 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  e.  RR )
7727a1i 11 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
7825adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
794adantr 453 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
80 simprr 735 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
8179, 70, 80ltled 9223 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
8270, 78, 81rpgecld 10685 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR+ )
8382relogcld 20520 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  y )  e.  RR )
8477, 83remulcld 9118 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  y
) )  e.  RR )
8576, 84readdcld 9117 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) )  e.  RR )
8662recnd 9116 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  CC )
8763recnd 9116 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  e.  CC )
8886, 87abs2dif2d 12262 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  ( ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )  +  ( abs `  (
2  x.  ( log `  x ) ) ) ) )
8921adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
90 vmage0 20906 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
9110, 90syl 16 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
9210nnred 10017 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
9310nnge1d 10044 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
9492, 93logge0d 20527 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  n ) )
95 chpge0 20911 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  0  <_  (ψ `  ( x  /  n ) ) )
9616, 95syl 16 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (ψ `  ( x  /  n
) ) )
9714, 18, 94, 96addge0d 9604 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )
9812, 19, 91, 97mulge0d 9605 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
998, 20, 98fsumge0 12576 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
10099adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
10189, 78, 100divge0d 10686 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x ) )
10262, 101absidd 12227 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )
10378relogcld 20520 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  e.  RR )
104 2rp 10619 . . . . . . . . 9  |-  2  e.  RR+
105 rpge0 10626 . . . . . . . . 9  |-  ( 2  e.  RR+  ->  0  <_ 
2 )
106104, 105mp1i 12 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  2 )
10724adantr 453 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  <_  x )
10879, 107logge0d 20527 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( log `  x ) )
10977, 103, 106, 108mulge0d 9605 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( 2  x.  ( log `  x ) ) )
11063, 109absidd 12227 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( 2  x.  ( log `  x ) ) )  =  ( 2  x.  ( log `  x
) ) )
111102, 110oveq12d 6101 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x ) )  +  ( abs `  (
2  x.  ( log `  x ) ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) ) )
11288, 111breqtrd 4238 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) ) )
11322a1i 11 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  1  e.  RR+ )
11479adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  x  e.  RR )
115114, 66nndivred 10050 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( x  /  n )  e.  RR )
116115, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
11769, 116readdcld 9117 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n
) ) )  e.  RR )
11867, 117remulcld 9118 . . . . . . . . 9  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
11965, 118fsumrecl 12530 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  e.  RR )
12066, 90syl 16 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (Λ `  n ) )
12166nnred 10017 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  n  e.  RR )
12266nnge1d 10044 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  1  <_  n
)
123121, 122logge0d 20527 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  ( log `  n ) )
124115, 95syl 16 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (ψ `  ( x  /  n
) ) )
12569, 116, 123, 124addge0d 9604 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )
12667, 117, 120, 125mulge0d 9605 . . . . . . . . 9  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (
(Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
127 flword2 11222 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  ( |_ `  y )  e.  ( ZZ>= `  ( |_ `  x ) ) )
12879, 70, 81, 127syl3anc 1185 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( |_ `  y )  e.  (
ZZ>= `  ( |_ `  x ) ) )
129 fzss2 11094 . . . . . . . . . 10  |-  ( ( |_ `  y )  e.  ( ZZ>= `  ( |_ `  x ) )  ->  ( 1 ... ( |_ `  x
) )  C_  (
1 ... ( |_ `  y ) ) )
130128, 129syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 1 ... ( |_ `  x ) )  C_  ( 1 ... ( |_ `  y ) ) )
13165, 118, 126, 130fsumless 12577 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) ) )
13281adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  x  <_  y
)
133114, 71, 68, 132lediv1dd 10704 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( x  /  n )  <_  (
y  /  n ) )
134 chpwordi 20942 . . . . . . . . . . . 12  |-  ( ( ( x  /  n
)  e.  RR  /\  ( y  /  n
)  e.  RR  /\  ( x  /  n
)  <_  ( y  /  n ) )  -> 
(ψ `  ( x  /  n ) )  <_ 
(ψ `  ( y  /  n ) ) )
135115, 72, 133, 134syl3anc 1185 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  (ψ `  (
x  /  n ) )  <_  (ψ `  (
y  /  n ) ) )
136116, 73, 69, 135leadd2dd 9643 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n
) ) )  <_ 
( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )
137117, 74, 67, 120, 136lemul2ad 9953 . . . . . . . . 9  |-  ( ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  n  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_ 
( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
13865, 118, 75, 137fsumle 12580 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
13989, 119, 76, 131, 138letrd 9229 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
14089, 76, 113, 79, 100, 139, 107lediv12ad 10705 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  <_ 
( sum_ n  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  / 
1 ) )
14176recnd 9116 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
y  /  n ) ) ) )  e.  CC )
142141div1d 9784 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  /  1 )  = 
sum_ n  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
143140, 142breqtrd 4238 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  <_  sum_ n  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( y  /  n
) ) ) ) )
14478, 82logled 20524 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( x  <_  y  <->  ( log `  x
)  <_  ( log `  y ) ) )
14581, 144mpbid 203 . . . . . 6  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( log `  x )  <_  ( log `  y ) )
146103, 83, 77, 106, 145lemul2ad 9953 . . . . 5  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 2  x.  ( log `  x
) )  <_  (
2  x.  ( log `  y ) ) )
14762, 63, 76, 84, 143, 146le2addd 9646 . . . 4  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( 2  x.  ( log `  x ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) ) )
14861, 64, 85, 112, 147letrd 9229 . . 3  |-  ( ( (  T.  /\  x  e.  ( 1 [,)  +oo ) )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( y  /  n
) ) ) )  +  ( 2  x.  ( log `  y
) ) ) )
1496, 7, 32, 37, 58, 148o1bddrp 12338 . 2  |-  (  T. 
->  E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  c )
150149trud 1333 1  |-  E. c  e.  RR+  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  /  x )  -  (
2  x.  ( log `  x ) ) ) )  <_  c
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    T. wtru 1326    e. wcel 1726   A.wral 2707   E.wrex 2708    C_ wss 3322   class class class wbr 4214    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    +oocpnf 9119    < clt 9122    <_ cle 9123    - cmin 9293    / cdiv 9679   NNcn 10002   2c2 10051   ZZ>=cuz 10490   RR+crp 10614   [,)cico 10920   ...cfz 11045   |_cfl 11203   abscabs 12041   O ( 1 )co1 12282   sum_csu 12481   logclog 20454  Λcvma 20876  ψcchp 20877
This theorem is referenced by:  selberg4  21257  selbergsb  21271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-disj 4185  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-o1 12286  df-lo1 12287  df-sum 12482  df-ef 12672  df-e 12673  df-sin 12674  df-cos 12675  df-pi 12677  df-dvds 12855  df-gcd 13009  df-prm 13082  df-pc 13213  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-cmp 17452  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-cxp 20457  df-em 20833  df-vma 20882  df-chp 20883  df-mu 20885
  Copyright terms: Public domain W3C validator