MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem1 Unicode version

Theorem selberglem1 20694
Description: Lemma for selberg 20697. Estimation of the asymptotic part of selberglem3 20696. (Contributed by Mario Carneiro, 20-May-2016.)
Hypothesis
Ref Expression
selberglem1.t  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
Assertion
Ref Expression
selberglem1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Distinct variable group:    x, n
Allowed substitution hints:    T( x, n)

Proof of Theorem selberglem1
StepHypRef Expression
1 fzfid 11035 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 10819 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
32adantl 452 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
4 mucl 20379 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
53, 4syl 15 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
65zred 10117 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
76, 3nndivred 9794 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
87recnd 8861 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
92nnrpd 10389 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
10 rpdivcl 10376 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
119, 10sylan2 460 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
12 relogcl 19932 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( log `  ( x  /  n
) )  e.  RR )
1311, 12syl 15 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
1413recnd 8861 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
1514sqcld 11243 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  CC )
168, 15mulcld 8855 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  e.  CC )
171, 16fsumcl 12206 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  e.  CC )
18 2cn 9816 . . . . . . . . 9  |-  2  e.  CC
1918a1i 10 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
2019, 14mulcld 8855 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  (
x  /  n ) ) )  e.  CC )
2119, 20subcld 9157 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) )  e.  CC )
228, 21mulcld 8855 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
231, 22fsumcl 12206 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC )
24 relogcl 19932 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
2524recnd 8861 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
26 mulcl 8821 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( log `  x )  e.  CC )  -> 
( 2  x.  ( log `  x ) )  e.  CC )
2718, 25, 26sylancr 644 . . . . 5  |-  ( x  e.  RR+  ->  ( 2  x.  ( log `  x
) )  e.  CC )
2817, 23, 27addsubd 9178 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
29 selberglem1.t . . . . . . . . 9  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
3029oveq2i 5869 . . . . . . . 8  |-  ( ( mmu `  n )  x.  T )  =  ( ( mmu `  n )  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )
315zcnd 10118 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
3215, 21addcld 8854 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
333nnrpd 10389 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3433rpcnne0d 10399 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
35 divass 9442 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( mmu `  n )  x.  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
) ) )
36 div23 9443 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( ( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
3735, 36eqtr3d 2317 . . . . . . . . . 10  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( mmu `  n )  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )  =  ( ( ( mmu `  n )  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
3831, 32, 34, 37syl3anc 1182 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n ) )  =  ( ( ( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
398, 15, 21adddid 8859 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4038, 39eqtrd 2315 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4130, 40syl5eq 2327 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  T )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4241sumeq2dv 12176 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( ( log `  (
x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
431, 16, 22fsumadd 12211 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( ( log `  (
x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
4442, 43eqtrd 2315 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
4544oveq1d 5873 . . . 4  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )  -  ( 2  x.  ( log `  x
) ) ) )
4618a1i 10 . . . . . . . 8  |-  ( x  e.  RR+  ->  2  e.  CC )
478, 14mulcld 8855 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
488, 47subcld 9157 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  -  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) ) )  e.  CC )
491, 46, 48fsummulc2 12246 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 2  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) ) )
501, 8, 47fsumsub 12250 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
5150oveq2d 5874 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 2  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
5249, 51eqtr3d 2317 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
5319, 8mulcomd 8856 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( mmu `  n )  /  n
) )  =  ( ( ( mmu `  n )  /  n
)  x.  2 ) )
5419, 8, 14mul12d 9021 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )
5553, 54oveq12d 5876 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  ( ( mmu `  n )  /  n ) )  -  ( 2  x.  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  2 )  -  ( ( ( mmu `  n )  /  n )  x.  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5619, 8, 47subdid 9235 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  -  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( 2  x.  ( ( mmu `  n )  /  n ) )  -  ( 2  x.  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
578, 19, 20subdid 9235 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  2 )  -  ( ( ( mmu `  n )  /  n )  x.  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5855, 56, 573eqtr4d 2325 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  -  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5958sumeq2dv 12176 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )
6052, 59eqtr3d 2317 . . . . 5  |-  ( x  e.  RR+  ->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )
6160oveq2d 5874 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
6228, 45, 613eqtr4d 2325 . . 3  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
6362mpteq2ia 4102 . 2  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
64 ovex 5883 . . . . 5  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) )  e.  _V
6564a1i 10 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) )  e.  _V )
66 ovex 5883 . . . . 5  |-  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  _V
6766a1i 10 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  _V )
68 mulog2sum 20686 . . . . 5  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) ) )  e.  O ( 1 )
6968a1i 10 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) ) )  e.  O ( 1 ) )
7018elexi 2797 . . . . . 6  |-  2  e.  _V
7170a1i 10 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  2  e. 
_V )
72 ovex 5883 . . . . . 6  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  _V
7372a1i 10 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  _V )
74 rpssre 10364 . . . . . . 7  |-  RR+  C_  RR
75 o1const 12093 . . . . . . 7  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O ( 1 ) )
7674, 18, 75mp2an 653 . . . . . 6  |-  ( x  e.  RR+  |->  2 )  e.  O ( 1 )
7776a1i 10 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  2 )  e.  O
( 1 ) )
78 reex 8828 . . . . . . . . 9  |-  RR  e.  _V
7978, 74ssexi 4159 . . . . . . . 8  |-  RR+  e.  _V
8079a1i 10 . . . . . . 7  |-  (  T. 
->  RR+  e.  _V )
81 sumex 12160 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  _V
8281a1i 10 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  _V )
83 sumex 12160 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e. 
_V
8483a1i 10 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e. 
_V )
85 eqidd 2284 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) ) )
86 eqidd 2284 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
8780, 82, 84, 85, 86offval2 6095 . . . . . 6  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  o F  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
88 mudivsum 20679 . . . . . . 7  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O
( 1 )
89 mulogsum 20681 . . . . . . 7  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 )
90 o1sub 12089 . . . . . . 7  |-  ( ( ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O ( 1 )  /\  (
x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O ( 1 ) )  ->  (
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  o F  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O ( 1 ) )
9188, 89, 90mp2an 653 . . . . . 6  |-  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  o F  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O ( 1 )
9287, 91syl6eqelr 2372 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O ( 1 ) )
9371, 73, 77, 92o1mul2 12098 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )  e.  O
( 1 ) )
9465, 67, 69, 93o1add2 12097 . . 3  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )  e.  O ( 1 ) )
9594trud 1314 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )  e.  O ( 1 )
9663, 95eqeltri 2353 1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    T. wtru 1307    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    C_ wss 3152    e. cmpt 4077   ` cfv 5255  (class class class)co 5858    o Fcof 6076   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   RR+crp 10354   ...cfz 10782   |_cfl 10924   ^cexp 11104   O ( 1 )co1 11960   sum_csu 12158   logclog 19912   mmucmu 20332
This theorem is referenced by:  selberglem2  20695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-o1 11964  df-lo1 11965  df-sum 12159  df-ef 12349  df-e 12350  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cxp 19915  df-em 20287  df-mu 20338
  Copyright terms: Public domain W3C validator