MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem2 Unicode version

Theorem selberglem2 20711
Description: Lemma for selberg 20713. (Contributed by Mario Carneiro, 23-May-2016.)
Hypothesis
Ref Expression
selberglem1.t  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
Assertion
Ref Expression
selberglem2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  e.  O ( 1 )
Distinct variable group:    m, n, x
Allowed substitution hints:    T( x, m, n)

Proof of Theorem selberglem2
StepHypRef Expression
1 reex 8844 . . . . . . 7  |-  RR  e.  _V
2 rpssre 10380 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4175 . . . . . 6  |-  RR+  e.  _V
43a1i 10 . . . . 5  |-  (  T. 
->  RR+  e.  _V )
5 fzfid 11051 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
6 elfznn 10835 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
76adantl 452 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
8 mucl 20395 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
97, 8syl 15 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
109zred 10133 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1110recnd 8877 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
12 fzfid 11051 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
13 elfznn 10835 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
1413adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
1514nnrpd 10405 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
1615relogcld 19990 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( log `  m )  e.  RR )
1716resqcld 11287 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( ( log `  m ) ^
2 )  e.  RR )
1812, 17fsumrecl 12223 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  e.  RR )
19 simplr 731 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
2018, 19rerpdivcld 10433 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  e.  RR )
2120recnd 8877 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  e.  CC )
22 selberglem1.t . . . . . . . . . 10  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
23 simpr 447 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  RR+ )
246nnrpd 10405 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
25 rpdivcl 10392 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
2623, 24, 25syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2726relogcld 19990 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
2827resqcld 11287 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  RR )
29 2re 9831 . . . . . . . . . . . . 13  |-  2  e.  RR
30 remulcl 8838 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( log `  ( x  /  n ) )  e.  RR )  -> 
( 2  x.  ( log `  ( x  /  n ) ) )  e.  RR )
3129, 27, 30sylancr 644 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  (
x  /  n ) ) )  e.  RR )
32 resubcl 9127 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  ( 2  x.  ( log `  ( x  /  n ) ) )  e.  RR )  -> 
( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) )  e.  RR )
3329, 31, 32sylancr 644 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) )  e.  RR )
3428, 33readdcld 8878 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  RR )
3534, 7nndivred 9810 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
)  e.  RR )
3622, 35syl5eqel 2380 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  RR )
3736recnd 8877 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
3821, 37subcld 9173 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T )  e.  CC )
3911, 38mulcld 8871 . . . . . 6  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
405, 39fsumcl 12222 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
4111, 37mulcld 8871 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  T )  e.  CC )
425, 41fsumcl 12222 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  e.  CC )
43 2cn 9832 . . . . . . 7  |-  2  e.  CC
44 relogcl 19948 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
4544adantl 452 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
4645recnd 8877 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
47 mulcl 8837 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( log `  x )  e.  CC )  -> 
( 2  x.  ( log `  x ) )  e.  CC )
4843, 46, 47sylancr 644 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 2  x.  ( log `  x
) )  e.  CC )
4942, 48subcld 9173 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  e.  CC )
50 eqidd 2297 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
51 eqidd 2297 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )
524, 40, 49, 50, 51offval2 6111 . . . 4  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) ) )
5340, 42, 48addsubassd 9193 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )
54 rpcnne0 10387 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
5554adantl 452 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
5655simpld 445 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  CC )
5710adantr 451 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( mmu `  n )  e.  RR )
5857, 17remulcld 8879 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  x.  ( ( log `  m
) ^ 2 ) )  e.  RR )
5912, 58fsumrecl 12223 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  e.  RR )
6059recnd 8877 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  e.  CC )
6155simprd 449 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  =/=  0 )
625, 56, 60, 61fsumdivc 12264 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x ) )
6317recnd 8877 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( ( log `  m ) ^
2 )  e.  CC )
6412, 63fsumcl 12222 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  e.  CC )
6555adantr 451 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
66 divass 9458 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  sum_
m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
6711, 64, 65, 66syl3anc 1182 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
6812, 11, 63fsummulc2 12262 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) ) )
6968oveq1d 5889 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x ) )
7021, 37npcand 9177 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T )  +  T
)  =  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x ) )
7170oveq2d 5890 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
)  +  T ) )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
7211, 38, 37adddid 8875 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
)  +  T ) )  =  ( ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
7371, 72eqtr3d 2330 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  =  ( ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  ( ( mmu `  n
)  x.  T ) ) )
7467, 69, 733eqtr3d 2336 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  =  ( ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
7574sumeq2dv 12192 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
765, 39, 41fsumadd 12227 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) ) )
7762, 75, 763eqtrrd 2333 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x ) )
7877oveq1d 5889 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
7953, 78eqtr3d 2330 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T )  -  ( 2  x.  ( log `  x
) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x
) ) ) )
8079mpteq2dva 4122 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) ) )
8152, 80eqtrd 2328 . . 3  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) ) )
82 1re 8853 . . . . . 6  |-  1  e.  RR
8382a1i 10 . . . . 5  |-  (  T. 
->  1  e.  RR )
845, 28fsumrecl 12223 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  RR )
8584, 23rerpdivcld 10433 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  e.  RR )
8685recnd 8877 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  e.  CC )
8743a1i 10 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  2  e.  CC )
88 2nn0 9998 . . . . . . . 8  |-  2  e.  NN0
89 logexprlim 20480 . . . . . . . 8  |-  ( 2  e.  NN0  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x ) )  ~~> r  ( ! `  2 ) )
9088, 89mp1i 11 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x ) )  ~~> r  ( ! ` 
2 ) )
9143a1i 10 . . . . . . . 8  |-  (  T. 
->  2  e.  CC )
92 rlimconst 12034 . . . . . . . 8  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  ~~> r  2 )
932, 91, 92sylancr 644 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  2 )  ~~> r  2 )
9486, 87, 90, 93rlimadd 12132 . . . . . 6  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  ~~> r  ( ( ! `  2
)  +  2 ) )
95 rlimo1 12106 . . . . . 6  |-  ( ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  ~~> r  ( ( ! `  2
)  +  2 )  ->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  O
( 1 ) )
9694, 95syl 15 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  O ( 1 ) )
97 readdcl 8836 . . . . . 6  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  e.  RR  /\  2  e.  RR )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  RR )
9885, 29, 97sylancl 643 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  RR )
9940abscld 11934 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
10098recnd 8877 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  CC )
101100abscld 11934 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  RR )
10239abscld 11934 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
1035, 102fsumrecl 12223 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
1045, 39fsumabs 12275 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
105 readdcl 8836 . . . . . . . . . . . 12  |-  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  e.  RR  /\  2  e.  RR )  ->  (
( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  RR )
10628, 29, 105sylancl 643 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  RR )
107106, 19rerpdivcld 10433 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  e.  RR )
1085, 107fsumrecl 12223 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
)  e.  RR )
10938abscld 11934 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  RR )
11011, 38absmuld 11952 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( ( abs `  ( mmu `  n
) )  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
11111abscld 11934 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  e.  RR )
11282a1i 10 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
11338absge0d 11942 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
114 mule1 20402 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
1157, 114syl 15 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  <_  1
)
116111, 112, 109, 113, 115lemul1ad 9712 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( 1  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
117109recnd 8877 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
118117mulid2d 8869 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
119116, 118breqtrd 4063 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
120110, 119eqbrtrd 4059 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
12165simpld 445 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
122121, 38absmuld 11952 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( x  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( ( abs `  x )  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
123121, 21, 37subdid 9251 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  =  ( ( x  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  -  ( x  x.  T ) ) )
12465simprd 449 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  =/=  0 )
12564, 121, 124divcan2d 9554 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )
12634recnd 8877 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
1277nnrpd 10405 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
128 rpcnne0 10387 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
129127, 128syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
130 divass 9458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( x  x.  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
) ) )
13122oveq2i 5885 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  x.  T )  =  ( x  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )
132130, 131syl6eqr 2346 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( x  x.  T ) )
133 div23 9459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
134132, 133eqtr3d 2330 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( x  x.  T )  =  ( ( x  /  n
)  x.  ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
135121, 126, 129, 134syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  T )  =  ( ( x  /  n
)  x.  ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
136125, 135oveq12d 5892 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x ) )  -  ( x  x.  T
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )
137123, 136eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )
138137fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( x  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) ) )
139 rprege0 10384 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
140 absid 11797 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
14119, 139, 1403syl 18 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  x )  =  x )
142141oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  x )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( x  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
143122, 138, 1423eqtr3d 2336 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  =  ( x  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
1447nncnd 9778 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
145144mulid2d 8869 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
146 rpre 10376 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR+  ->  x  e.  RR )
147146adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  RR )
148 fznnfl 10982 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
149147, 148syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( n  e.  ( 1 ... ( |_ `  x
) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
150149simplbda 607 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
151145, 150eqbrtrd 4059 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
15219rpred 10406 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
153112, 152, 127lemuldivd 10451 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
154151, 153mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
155 log2sumbnd 20709 . . . . . . . . . . . . . 14  |-  ( ( ( x  /  n
)  e.  RR+  /\  1  <_  ( x  /  n
) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  <_ 
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 ) )
15626, 154, 155syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  <_ 
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 ) )
157143, 156eqbrtrrd 4061 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 ) )
158109, 106, 19lemuldiv2d 10452 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  <->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  <_ 
( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) ) )
159157, 158mpbid 201 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  <_ 
( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) )
160102, 109, 107, 120, 159letrd 8989 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x ) )
1615, 102, 107, 160fsumle 12273 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) )
1625, 106fsumrecl 12223 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  e.  RR )
163 remulcl 8838 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  2  e.  RR )  ->  ( x  x.  2 )  e.  RR )
164147, 29, 163sylancl 643 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  x.  2 )  e.  RR )
16584, 164readdcld 8878 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  e.  RR )
16628recnd 8877 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  CC )
16743a1i 10 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
1685, 166, 167fsumadd 12227 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) 2 ) )
169 fsumconst 12268 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  2  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 ) )
1705, 43, 169sylancl 643 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 ) )
171139adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
172 flge0nn0 10964 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
173 hashfz1 11361 . . . . . . . . . . . . . . . . 17  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
174171, 172, 1733syl 18 . . . . . . . . . . . . . . . 16  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
175174oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 )  =  ( ( |_ `  x
)  x.  2 ) )
176170, 175eqtrd 2328 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( ( |_ `  x )  x.  2 ) )
177176oveq2d 5890 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) 2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( ( |_ `  x )  x.  2 ) ) )
178168, 177eqtrd 2328 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( ( |_
`  x )  x.  2 ) ) )
179 reflcl 10944 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
180147, 179syl 15 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( |_
`  x )  e.  RR )
18129a1i 10 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  2  e.  RR )
182180, 181remulcld 8879 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  x.  2 )  e.  RR )
183 flle 10947 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
184147, 183syl 15 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( |_
`  x )  <_  x )
185 2pos 9844 . . . . . . . . . . . . . . . . 17  |-  0  <  2
18629, 185pm3.2i 441 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
187186a1i 10 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 2  e.  RR  /\  0  <  2 ) )
188 lemul1 9624 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  x
)  e.  RR  /\  x  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( |_
`  x )  <_  x 
<->  ( ( |_ `  x )  x.  2 )  <_  ( x  x.  2 ) ) )
189180, 147, 187, 188syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  <_  x  <->  ( ( |_ `  x )  x.  2 )  <_  (
x  x.  2 ) ) )
190184, 189mpbid 201 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  x.  2 )  <_ 
( x  x.  2 ) )
191182, 164, 84, 190leadd2dd 9403 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( ( |_ `  x )  x.  2 ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) ) )
192178, 191eqbrtrd 4059 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) ) )
193162, 165, 23, 192lediv1dd 10460 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  <_  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x ) )
194106recnd 8877 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  CC )
1955, 56, 194, 61fsumdivc 12264 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x ) )
19684recnd 8877 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  CC )
19756, 87mulcld 8871 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  x.  2 )  e.  CC )
198 divdir 9463 . . . . . . . . . . . 12  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  CC  /\  (
x  x.  2 )  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) ) )
199196, 197, 55, 198syl3anc 1182 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) ) )
20087, 56, 61divcan3d 9557 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( x  x.  2 )  /  x )  =  2 )
201200oveq2d 5890 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
202199, 201eqtrd 2328 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
203193, 195, 2023brtr3d 4068 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
)  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
204103, 108, 98, 161, 203letrd 8989 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
20599, 103, 98, 104, 204letrd 8989 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
20698leabsd 11913 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  <_  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
20799, 98, 101, 205, 206letrd 8989 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
208207adantrr 697 . . . . 5  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) )  <_ 
( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
20983, 96, 98, 40, 208o1le 12142 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  O ( 1 ) )
21022selberglem1 20710 . . . 4  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
211 o1add 12103 . . . 4  |-  ( ( ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  O ( 1 )  /\  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )  ->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  e.  O ( 1 ) )
212209, 210, 211sylancl 643 . . 3  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  e.  O ( 1 ) )
21381, 212eqeltrrd 2371 . 2  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
214213trud 1314 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    T. wtru 1307    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874    o Fcof 6092   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   RR+crp 10370   ...cfz 10798   |_cfl 10940   ^cexp 11120   !cfa 11304   #chash 11353   abscabs 11735    ~~> r crli 11975   O ( 1 )co1 11976   sum_csu 12174   logclog 19928   mmucmu 20348
This theorem is referenced by:  selberglem3  20712  selberg  20713
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-o1 11980  df-lo1 11981  df-sum 12175  df-ef 12365  df-e 12366  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-em 20303  df-mu 20354
  Copyright terms: Public domain W3C validator