MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem2 Structured version   Unicode version

Theorem selberglem2 21240
Description: Lemma for selberg 21242. (Contributed by Mario Carneiro, 23-May-2016.)
Hypothesis
Ref Expression
selberglem1.t  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
Assertion
Ref Expression
selberglem2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  e.  O ( 1 )
Distinct variable group:    m, n, x
Allowed substitution hints:    T( x, m, n)

Proof of Theorem selberglem2
StepHypRef Expression
1 reex 9081 . . . . . . 7  |-  RR  e.  _V
2 rpssre 10622 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4348 . . . . . 6  |-  RR+  e.  _V
43a1i 11 . . . . 5  |-  (  T. 
->  RR+  e.  _V )
5 fzfid 11312 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
6 elfznn 11080 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
76adantl 453 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
8 mucl 20924 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
97, 8syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
109zred 10375 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1110recnd 9114 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
12 fzfid 11312 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
13 elfznn 11080 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
1413adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
1514nnrpd 10647 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
1615relogcld 20518 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( log `  m )  e.  RR )
1716resqcld 11549 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( ( log `  m ) ^
2 )  e.  RR )
1812, 17fsumrecl 12528 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  e.  RR )
19 simplr 732 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
2018, 19rerpdivcld 10675 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  e.  RR )
2120recnd 9114 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  e.  CC )
22 selberglem1.t . . . . . . . . . 10  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
23 simpr 448 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  RR+ )
246nnrpd 10647 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
25 rpdivcl 10634 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
2623, 24, 25syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2726relogcld 20518 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
2827resqcld 11549 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  RR )
29 2re 10069 . . . . . . . . . . . . 13  |-  2  e.  RR
30 remulcl 9075 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( log `  ( x  /  n ) )  e.  RR )  -> 
( 2  x.  ( log `  ( x  /  n ) ) )  e.  RR )
3129, 27, 30sylancr 645 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  (
x  /  n ) ) )  e.  RR )
32 resubcl 9365 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  ( 2  x.  ( log `  ( x  /  n ) ) )  e.  RR )  -> 
( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) )  e.  RR )
3329, 31, 32sylancr 645 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) )  e.  RR )
3428, 33readdcld 9115 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  RR )
3534, 7nndivred 10048 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
)  e.  RR )
3622, 35syl5eqel 2520 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  RR )
3736recnd 9114 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
3821, 37subcld 9411 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T )  e.  CC )
3911, 38mulcld 9108 . . . . . 6  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
405, 39fsumcl 12527 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
4111, 37mulcld 9108 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  T )  e.  CC )
425, 41fsumcl 12527 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  e.  CC )
43 2cn 10070 . . . . . . 7  |-  2  e.  CC
44 relogcl 20473 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
4544adantl 453 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
4645recnd 9114 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
47 mulcl 9074 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( log `  x )  e.  CC )  -> 
( 2  x.  ( log `  x ) )  e.  CC )
4843, 46, 47sylancr 645 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 2  x.  ( log `  x
) )  e.  CC )
4942, 48subcld 9411 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  e.  CC )
50 eqidd 2437 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
51 eqidd 2437 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )
524, 40, 49, 50, 51offval2 6322 . . . 4  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) ) )
5340, 42, 48addsubassd 9431 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )
54 rpcnne0 10629 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
5554adantl 453 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
5655simpld 446 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  CC )
5710adantr 452 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( mmu `  n )  e.  RR )
5857, 17remulcld 9116 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  x.  ( ( log `  m
) ^ 2 ) )  e.  RR )
5912, 58fsumrecl 12528 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  e.  RR )
6059recnd 9114 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  e.  CC )
6155simprd 450 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  =/=  0 )
625, 56, 60, 61fsumdivc 12569 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x ) )
6317recnd 9114 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( ( log `  m ) ^
2 )  e.  CC )
6412, 63fsumcl 12527 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  e.  CC )
6555adantr 452 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
66 divass 9696 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  sum_
m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
6711, 64, 65, 66syl3anc 1184 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
6812, 11, 63fsummulc2 12567 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) ) )
6968oveq1d 6096 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )  /  x )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x ) )
7021, 37npcand 9415 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T )  +  T
)  =  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x ) )
7170oveq2d 6097 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
)  +  T ) )  =  ( ( mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) ) )
7211, 38, 37adddid 9112 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
)  +  T ) )  =  ( ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
7371, 72eqtr3d 2470 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  =  ( ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  ( ( mmu `  n
)  x.  T ) ) )
7467, 69, 733eqtr3d 2476 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  =  ( ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
7574sumeq2dv 12497 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) ) )
765, 39, 41fsumadd 12532 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( ( mmu `  n )  x.  T
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) ) )
7762, 75, 763eqtrrd 2473 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x ) )
7877oveq1d 6096 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
7953, 78eqtr3d 2470 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) )  +  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  T )  -  ( 2  x.  ( log `  x
) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
( log `  m
) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x
) ) ) )
8079mpteq2dva 4295 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  T
)  -  ( 2  x.  ( log `  x
) ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) ) )
8152, 80eqtrd 2468 . . 3  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) ) )
82 1re 9090 . . . . . 6  |-  1  e.  RR
8382a1i 11 . . . . 5  |-  (  T. 
->  1  e.  RR )
845, 28fsumrecl 12528 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  RR )
8584, 23rerpdivcld 10675 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  e.  RR )
8685recnd 9114 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  e.  CC )
8743a1i 11 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  2  e.  CC )
88 2nn0 10238 . . . . . . . 8  |-  2  e.  NN0
89 logexprlim 21009 . . . . . . . 8  |-  ( 2  e.  NN0  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x ) )  ~~> r  ( ! `  2 ) )
9088, 89mp1i 12 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x ) )  ~~> r  ( ! ` 
2 ) )
9143a1i 11 . . . . . . . 8  |-  (  T. 
->  2  e.  CC )
92 rlimconst 12338 . . . . . . . 8  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  ~~> r  2 )
932, 91, 92sylancr 645 . . . . . . 7  |-  (  T. 
->  ( x  e.  RR+  |->  2 )  ~~> r  2 )
9486, 87, 90, 93rlimadd 12436 . . . . . 6  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  ~~> r  ( ( ! `  2
)  +  2 ) )
95 rlimo1 12410 . . . . . 6  |-  ( ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  ~~> r  ( ( ! `  2
)  +  2 )  ->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  O
( 1 ) )
9694, 95syl 16 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  O ( 1 ) )
97 readdcl 9073 . . . . . 6  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  e.  RR  /\  2  e.  RR )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  RR )
9885, 29, 97sylancl 644 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  RR )
9940abscld 12238 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
10098recnd 9114 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  e.  CC )
101100abscld 12238 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )  e.  RR )
10239abscld 12238 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
1035, 102fsumrecl 12528 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  RR )
1045, 39fsumabs 12580 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
105 readdcl 9073 . . . . . . . . . . . 12  |-  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  e.  RR  /\  2  e.  RR )  ->  (
( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  RR )
10628, 29, 105sylancl 644 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  RR )
107106, 19rerpdivcld 10675 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  e.  RR )
1085, 107fsumrecl 12528 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
)  e.  RR )
10938abscld 12238 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  RR )
11011, 38absmuld 12256 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( ( abs `  ( mmu `  n
) )  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
11111abscld 12238 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  e.  RR )
11282a1i 11 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
11338absge0d 12246 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
114 mule1 20931 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
1157, 114syl 16 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  <_  1
)
116111, 112, 109, 113, 115lemul1ad 9950 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( 1  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
117109recnd 9114 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  e.  CC )
118117mulid2d 9106 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
119116, 118breqtrd 4236 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
120110, 119eqbrtrd 4232 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )
12165simpld 446 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
122121, 38absmuld 12256 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( x  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( ( abs `  x )  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
123121, 21, 37subdid 9489 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  =  ( ( x  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  -  ( x  x.  T ) ) )
12465simprd 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  =/=  0 )
12564, 121, 124divcan2d 9792 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 ) )
12634recnd 9114 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
1277nnrpd 10647 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
128 rpcnne0 10629 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
129127, 128syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
130 divass 9696 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( x  x.  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
) ) )
13122oveq2i 6092 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  x.  T )  =  ( x  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )
132130, 131syl6eqr 2486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( x  x.  T ) )
133 div23 9697 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
134132, 133eqtr3d 2470 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( x  x.  T )  =  ( ( x  /  n
)  x.  ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
135121, 126, 129, 134syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  T )  =  ( ( x  /  n
)  x.  ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
136125, 135oveq12d 6099 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x ) )  -  ( x  x.  T
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )
137123, 136eqtrd 2468 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )
138137fveq2d 5732 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( x  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) ) )
139 rprege0 10626 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
140 absid 12101 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
14119, 139, 1403syl 19 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  x )  =  x )
142141oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  x )  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  =  ( x  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) ) )
143122, 138, 1423eqtr3d 2476 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  =  ( x  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) ) )
1447nncnd 10016 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
145144mulid2d 9106 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
146 rpre 10618 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR+  ->  x  e.  RR )
147146adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  RR )
148 fznnfl 11243 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
149147, 148syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( n  e.  ( 1 ... ( |_ `  x
) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
150149simplbda 608 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
151145, 150eqbrtrd 4232 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
15219rpred 10648 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
153112, 152, 127lemuldivd 10693 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
154151, 153mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
155 log2sumbnd 21238 . . . . . . . . . . . . . 14  |-  ( ( ( x  /  n
)  e.  RR+  /\  1  <_  ( x  /  n
) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  <_ 
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 ) )
15626, 154, 155syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  -  ( ( x  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) ) )  <_ 
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 ) )
157143, 156eqbrtrrd 4234 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  x.  ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 ) )
158109, 106, 19lemuldiv2d 10694 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  x.  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  <->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  <_ 
( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) ) )
159157, 158mpbid 202 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) )  <_ 
( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) )
160102, 109, 107, 120, 159letrd 9227 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x ) )
1615, 102, 107, 160fsumle 12578 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
) )
1625, 106fsumrecl 12528 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  e.  RR )
163 remulcl 9075 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  2  e.  RR )  ->  ( x  x.  2 )  e.  RR )
164147, 29, 163sylancl 644 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  x.  2 )  e.  RR )
16584, 164readdcld 9115 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  e.  RR )
16628recnd 9114 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  CC )
16743a1i 11 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
1685, 166, 167fsumadd 12532 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) 2 ) )
169 fsumconst 12573 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  2  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 ) )
1705, 43, 169sylancl 644 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 ) )
171139adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
172 flge0nn0 11225 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
173 hashfz1 11630 . . . . . . . . . . . . . . . . 17  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
174171, 172, 1733syl 19 . . . . . . . . . . . . . . . 16  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
175174oveq1d 6096 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  2 )  =  ( ( |_ `  x
)  x.  2 ) )
176170, 175eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 2  =  ( ( |_ `  x )  x.  2 ) )
177176oveq2d 6097 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) 2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( ( |_ `  x )  x.  2 ) ) )
178168, 177eqtrd 2468 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( ( |_
`  x )  x.  2 ) ) )
179 reflcl 11205 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
180147, 179syl 16 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( |_
`  x )  e.  RR )
18129a1i 11 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  2  e.  RR )
182180, 181remulcld 9116 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  x.  2 )  e.  RR )
183 flle 11208 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
184147, 183syl 16 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( |_
`  x )  <_  x )
185 2pos 10082 . . . . . . . . . . . . . . . . 17  |-  0  <  2
18629, 185pm3.2i 442 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
187186a1i 11 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( 2  e.  RR  /\  0  <  2 ) )
188 lemul1 9862 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  x
)  e.  RR  /\  x  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( |_
`  x )  <_  x 
<->  ( ( |_ `  x )  x.  2 )  <_  ( x  x.  2 ) ) )
189180, 147, 187, 188syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  <_  x  <->  ( ( |_ `  x )  x.  2 )  <_  (
x  x.  2 ) ) )
190184, 189mpbid 202 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  x.  2 )  <_ 
( x  x.  2 ) )
191182, 164, 84, 190leadd2dd 9641 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( ( |_ `  x )  x.  2 ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) ) )
192178, 191eqbrtrd 4232 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  2 )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) ) )
193162, 165, 23, 192lediv1dd 10702 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  <_  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x ) )
194106recnd 9114 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  2 )  e.  CC )
1955, 56, 194, 61fsumdivc 12569 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  2 )  /  x ) )
19684recnd 9114 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  CC )
19756, 87mulcld 9108 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( x  x.  2 )  e.  CC )
198 divdir 9701 . . . . . . . . . . . 12  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  e.  CC  /\  (
x  x.  2 )  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) ) )
199196, 197, 55, 198syl3anc 1184 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) ) )
20087, 56, 61divcan3d 9795 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( x  x.  2 )  /  x )  =  2 )
201200oveq2d 6097 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  ( ( x  x.  2 )  /  x
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
202199, 201eqtrd 2468 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( x  x.  2 ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
203193, 195, 2023brtr3d 4241 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  2 )  /  x
)  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
204103, 108, 98, 161, 203letrd 9227 . . . . . . . 8  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
20599, 103, 98, 104, 204letrd 9227 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) )
20698leabsd 12217 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 )  <_  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( log `  ( x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
20799, 98, 101, 205, 206letrd 9227 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
208207adantrr 698 . . . . 5  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( log `  m ) ^ 2 )  /  x )  -  T
) ) )  <_ 
( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  n ) ) ^ 2 )  /  x )  +  2 ) ) )
20983, 96, 98, 40, 208o1le 12446 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  O ( 1 ) )
21022selberglem1 21239 . . . 4  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 )
211 o1add 12407 . . . 4  |-  ( ( ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  x.  ( (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  e.  O ( 1 )  /\  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )  ->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  e.  O ( 1 ) )
212209, 210, 211sylancl 644 . . 3  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  x.  (
( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( log `  m
) ^ 2 )  /  x )  -  T ) ) )  o F  +  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) ) )  e.  O ( 1 ) )
21381, 212eqeltrrd 2511 . 2  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
214213trud 1332 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( ( mmu `  n )  x.  ( ( log `  m ) ^ 2 ) )  /  x
)  -  ( 2  x.  ( log `  x
) ) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081    o Fcof 6303   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   RR+crp 10612   ...cfz 11043   |_cfl 11201   ^cexp 11382   !cfa 11566   #chash 11618   abscabs 12039    ~~> r crli 12279   O ( 1 )co1 12280   sum_csu 12479   logclog 20452   mmucmu 20877
This theorem is referenced by:  selberglem3  21241  selberg  21242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-o1 12284  df-lo1 12285  df-sum 12480  df-ef 12670  df-e 12671  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-pc 13211  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455  df-em 20831  df-mu 20883
  Copyright terms: Public domain W3C validator