MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl2 Unicode version

Theorem seqcl2 11064
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqcl2.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqcl2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqcl2.4  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
Assertion
Ref Expression
seqcl2  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 N )  e.  C )
Distinct variable groups:    x, y, C    x, D, y    x, F, y    x, M, y   
x, N    x,  .+ , y    ph, x, y
Allowed substitution hint:    N( y)

Proof of Theorem seqcl2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqcl2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10804 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 15 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2343 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5525 . . . . . . 7  |-  ( x  =  M  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  M
) )
65eleq1d 2349 . . . . . 6  |-  ( x  =  M  ->  (
(  seq  M (  .+  ,  F ) `  x )  e.  C  <->  (  seq  M (  .+  ,  F ) `  M
)  e.  C ) )
74, 6imbi12d 311 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  e.  C )  <->  ( M  e.  ( M ... N
)  ->  (  seq  M (  .+  ,  F
) `  M )  e.  C ) ) )
87imbi2d 307 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  M )  e.  C
) ) ) )
9 eleq1 2343 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5525 . . . . . . 7  |-  ( x  =  n  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  n
) )
1110eleq1d 2349 . . . . . 6  |-  ( x  =  n  ->  (
(  seq  M (  .+  ,  F ) `  x )  e.  C  <->  (  seq  M (  .+  ,  F ) `  n
)  e.  C ) )
129, 11imbi12d 311 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  e.  C )  <->  ( n  e.  ( M ... N
)  ->  (  seq  M (  .+  ,  F
) `  n )  e.  C ) ) )
1312imbi2d 307 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  e.  C
) ) ) )
14 eleq1 2343 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5525 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  (
n  +  1 ) ) )
1615eleq1d 2349 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq  M (  .+  ,  F ) `  x )  e.  C  <->  (  seq  M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) )
1714, 16imbi12d 311 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  e.  C )  <->  ( (
n  +  1 )  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
1817imbi2d 307 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  ( n  +  1
) )  e.  C
) ) ) )
19 eleq1 2343 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5525 . . . . . . 7  |-  ( x  =  N  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  N
) )
2120eleq1d 2349 . . . . . 6  |-  ( x  =  N  ->  (
(  seq  M (  .+  ,  F ) `  x )  e.  C  <->  (  seq  M (  .+  ,  F ) `  N
)  e.  C ) )
2219, 21imbi12d 311 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  e.  C )  <->  ( N  e.  ( M ... N
)  ->  (  seq  M (  .+  ,  F
) `  N )  e.  C ) ) )
2322imbi2d 307 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  e.  C ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  N )  e.  C
) ) ) )
24 seqcl2.1 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  C )
25 seq1 11059 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq  M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
2625eleq1d 2349 . . . . . 6  |-  ( M  e.  ZZ  ->  (
(  seq  M (  .+  ,  F ) `  M )  e.  C  <->  ( F `  M )  e.  C ) )
2724, 26syl5ibr 212 . . . . 5  |-  ( M  e.  ZZ  ->  ( ph  ->  (  seq  M
(  .+  ,  F
) `  M )  e.  C ) )
2827a1dd 42 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq  M (  .+  ,  F
) `  M )  e.  C ) ) )
29 peano2fzr 10808 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3029adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3130expr 598 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
3231imim1d 69 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  e.  C
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  n
)  e.  C ) ) )
33 eluzp1p1 10253 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
3433ad2antrl 708 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
35 elfzuz3 10795 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
3635ad2antll 709 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
37 elfzuzb 10792 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
3834, 36, 37sylanbrc 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( ( M  + 
1 ) ... N
) )
39 seqcl2.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  x )  e.  D )
4039ralrimiva 2626 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  ( ( M  +  1 ) ... N ) ( F `  x
)  e.  D )
4140adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. x  e.  ( ( M  + 
1 ) ... N
) ( F `  x )  e.  D
)
42 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
4342eleq1d 2349 . . . . . . . . . . . . 13  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  x
)  e.  D  <->  ( F `  ( n  +  1 ) )  e.  D
) )
4443rspcv 2880 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( ( M  +  1 ) ... N )  ->  ( A. x  e.  (
( M  +  1 ) ... N ) ( F `  x
)  e.  D  -> 
( F `  (
n  +  1 ) )  e.  D ) )
4538, 41, 44sylc 56 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  D
)
46 seqcl2.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
4746caovclg 6012 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (  seq  M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D ) )  ->  ( (  seq 
M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C )
4847ex 423 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( (  seq 
M (  .+  ,  F ) `  n
)  e.  C  /\  ( F `  ( n  +  1 ) )  e.  D )  -> 
( (  seq  M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
4948adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
(  seq  M (  .+  ,  F ) `  n )  e.  C  /\  ( F `  (
n  +  1 ) )  e.  D )  ->  ( (  seq 
M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C ) )
5045, 49mpan2d 655 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  n
)  e.  C  -> 
( (  seq  M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) )  e.  C
) )
51 seqp1 11061 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq  M (  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq 
M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5251ad2antrl 708 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq  M (  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq 
M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5352eleq1d 2349 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C  <->  ( (  seq  M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  e.  C ) )
5450, 53sylibrd 225 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  n
)  e.  C  -> 
(  seq  M (  .+  ,  F ) `  ( n  +  1
) )  e.  C
) )
5554expr 598 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
(  seq  M (  .+  ,  F ) `  n )  e.  C  ->  (  seq  M ( 
.+  ,  F ) `
 ( n  + 
1 ) )  e.  C ) ) )
5655a2d 23 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  e.  C
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5732, 56syld 40 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  e.  C
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) )
5857expcom 424 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  (  seq  M (  .+  ,  F
) `  n )  e.  C )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq  M (  .+  ,  F ) `  ( n  +  1
) )  e.  C
) ) ) )
5958a2d 23 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq  M (  .+  ,  F
) `  n )  e.  C ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  ->  (  seq  M (  .+  ,  F ) `  (
n  +  1 ) )  e.  C ) ) ) )
608, 13, 18, 23, 28, 59uzind4 10276 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq  M
(  .+  ,  F
) `  N )  e.  C ) ) )
611, 60mpcom 32 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq  M
(  .+  ,  F
) `  N )  e.  C ) )
623, 61mpd 14 1  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 N )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255  (class class class)co 5858   1c1 8738    + caddc 8740   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046
This theorem is referenced by:  seqf2  11065  seqcl  11066  seqz  11094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047
  Copyright terms: Public domain W3C validator