MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfveq2 Unicode version

Theorem seqfveq2 11068
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq2.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
seqfveq2.2  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
seqfveq2.3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
seqfveq2.4  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
seqfveq2  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 N )  =  (  seq  K ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    k, F    k, G    k, K    k, N    ph, k
Allowed substitution hints:    .+ ( k)    M( k)

Proof of Theorem seqfveq2
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfveq2.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 eluzfz2 10804 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ( K ... N ) )
31, 2syl 15 . 2  |-  ( ph  ->  N  e.  ( K ... N ) )
4 eleq1 2343 . . . . . 6  |-  ( x  =  K  ->  (
x  e.  ( K ... N )  <->  K  e.  ( K ... N ) ) )
5 fveq2 5525 . . . . . . 7  |-  ( x  =  K  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  K
) )
6 fveq2 5525 . . . . . . 7  |-  ( x  =  K  ->  (  seq  K (  .+  ,  G ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  K
) )
75, 6eqeq12d 2297 . . . . . 6  |-  ( x  =  K  ->  (
(  seq  M (  .+  ,  F ) `  x )  =  (  seq  K (  .+  ,  G ) `  x
)  <->  (  seq  M
(  .+  ,  F
) `  K )  =  (  seq  K ( 
.+  ,  G ) `
 K ) ) )
84, 7imbi12d 311 . . . . 5  |-  ( x  =  K  ->  (
( x  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  =  (  seq  K ( 
.+  ,  G ) `
 x ) )  <-> 
( K  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  K )  =  (  seq  K ( 
.+  ,  G ) `
 K ) ) ) )
98imbi2d 307 . . . 4  |-  ( x  =  K  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  K )  =  (  seq  K ( 
.+  ,  G ) `
 K ) ) ) ) )
10 eleq1 2343 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( K ... N )  <->  n  e.  ( K ... N ) ) )
11 fveq2 5525 . . . . . . 7  |-  ( x  =  n  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  n
) )
12 fveq2 5525 . . . . . . 7  |-  ( x  =  n  ->  (  seq  K (  .+  ,  G ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  n
) )
1311, 12eqeq12d 2297 . . . . . 6  |-  ( x  =  n  ->  (
(  seq  M (  .+  ,  F ) `  x )  =  (  seq  K (  .+  ,  G ) `  x
)  <->  (  seq  M
(  .+  ,  F
) `  n )  =  (  seq  K ( 
.+  ,  G ) `
 n ) ) )
1410, 13imbi12d 311 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  =  (  seq  K ( 
.+  ,  G ) `
 x ) )  <-> 
( n  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  n )  =  (  seq  K ( 
.+  ,  G ) `
 n ) ) ) )
1514imbi2d 307 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( n  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  n )  =  (  seq  K ( 
.+  ,  G ) `
 n ) ) ) ) )
16 eleq1 2343 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( K ... N )  <->  ( n  +  1 )  e.  ( K ... N
) ) )
17 fveq2 5525 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fveq2 5525 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq  K (  .+  ,  G ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  (
n  +  1 ) ) )
1917, 18eqeq12d 2297 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq  M (  .+  ,  F ) `  x )  =  (  seq  K (  .+  ,  G ) `  x
)  <->  (  seq  M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq  K
(  .+  ,  G
) `  ( n  +  1 ) ) ) )
2016, 19imbi12d 311 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  =  (  seq  K ( 
.+  ,  G ) `
 x ) )  <-> 
( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq  K
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) )
2120imbi2d 307 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq  K
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) ) )
22 eleq1 2343 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( K ... N )  <->  N  e.  ( K ... N ) ) )
23 fveq2 5525 . . . . . . 7  |-  ( x  =  N  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
M (  .+  ,  F ) `  N
) )
24 fveq2 5525 . . . . . . 7  |-  ( x  =  N  ->  (  seq  K (  .+  ,  G ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  N
) )
2523, 24eqeq12d 2297 . . . . . 6  |-  ( x  =  N  ->  (
(  seq  M (  .+  ,  F ) `  x )  =  (  seq  K (  .+  ,  G ) `  x
)  <->  (  seq  M
(  .+  ,  F
) `  N )  =  (  seq  K ( 
.+  ,  G ) `
 N ) ) )
2622, 25imbi12d 311 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  x )  =  (  seq  K ( 
.+  ,  G ) `
 x ) )  <-> 
( N  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  N )  =  (  seq  K ( 
.+  ,  G ) `
 N ) ) ) )
2726imbi2d 307 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( K ... N )  ->  (  seq  M (  .+  ,  F ) `  x
)  =  (  seq 
K (  .+  ,  G ) `  x
) ) )  <->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  N )  =  (  seq  K ( 
.+  ,  G ) `
 N ) ) ) ) )
28 seqfveq2.2 . . . . . . 7  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 K )  =  ( G `  K
) )
29 seqfveq2.1 . . . . . . . . 9  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
30 eluzelz 10238 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
3129, 30syl 15 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
32 seq1 11059 . . . . . . . 8  |-  ( K  e.  ZZ  ->  (  seq  K (  .+  ,  G ) `  K
)  =  ( G `
 K ) )
3331, 32syl 15 . . . . . . 7  |-  ( ph  ->  (  seq  K ( 
.+  ,  G ) `
 K )  =  ( G `  K
) )
3428, 33eqtr4d 2318 . . . . . 6  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 K )  =  (  seq  K ( 
.+  ,  G ) `
 K ) )
3534a1d 22 . . . . 5  |-  ( ph  ->  ( K  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  K )  =  (  seq  K ( 
.+  ,  G ) `
 K ) ) )
3635a1i 10 . . . 4  |-  ( K  e.  ZZ  ->  ( ph  ->  ( K  e.  ( K ... N
)  ->  (  seq  M (  .+  ,  F
) `  K )  =  (  seq  K ( 
.+  ,  G ) `
 K ) ) ) )
37 peano2fzr 10808 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) )  ->  n  e.  ( K ... N ) )
3837adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( K ... N ) )
3938expr 598 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  +  1 )  e.  ( K ... N )  ->  n  e.  ( K ... N
) ) )
4039imim1d 69 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  e.  ( K ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  =  (  seq  K (  .+  ,  G ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  =  (  seq  K (  .+  ,  G ) `  n
) ) ) )
41 oveq1 5865 . . . . . . . . . 10  |-  ( (  seq  M (  .+  ,  F ) `  n
)  =  (  seq 
K (  .+  ,  G ) `  n
)  ->  ( (  seq  M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq  K
(  .+  ,  G
) `  n )  .+  ( F `  (
n  +  1 ) ) ) )
42 simpl 443 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  K )  /\  (
n  +  1 )  e.  ( K ... N ) )  ->  n  e.  ( ZZ>= `  K ) )
43 uztrn 10244 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
4442, 29, 43syl2anr 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
45 seqp1 11061 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq  M (  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq 
M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
4644, 45syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq  M (  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq 
M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
47 seqp1 11061 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  K
)  ->  (  seq  K (  .+  ,  G
) `  ( n  +  1 ) )  =  ( (  seq 
K (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
4847ad2antrl 708 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq  K (  .+  ,  G
) `  ( n  +  1 ) )  =  ( (  seq 
K (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
49 eluzp1p1 10253 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5049ad2antrl 708 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
51 elfzuz3 10795 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
5251ad2antll 709 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
53 elfzuzb 10792 . . . . . . . . . . . . . . 15  |-  ( ( n  +  1 )  e.  ( ( K  +  1 ) ... N )  <->  ( (
n  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  /\  N  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
5450, 52, 53sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( n  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
55 seqfveq2.4 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
5655ralrimiva 2626 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. k  e.  ( ( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k ) )
5756adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  A. k  e.  ( ( K  + 
1 ) ... N
) ( F `  k )  =  ( G `  k ) )
58 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
59 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
6058, 59eqeq12d 2297 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  ( n  +  1 ) )  =  ( G `  ( n  +  1 ) ) ) )
6160rspcv 2880 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( ( K  +  1 ) ... N )  ->  ( A. k  e.  (
( K  +  1 ) ... N ) ( F `  k
)  =  ( G `
 k )  -> 
( F `  (
n  +  1 ) )  =  ( G `
 ( n  + 
1 ) ) ) )
6254, 57, 61sylc 56 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( n  +  1 ) ) )
6362oveq2d 5874 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq  K (  .+  ,  G ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq  K
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) )
6448, 63eqtr4d 2318 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  (  seq  K (  .+  ,  G
) `  ( n  +  1 ) )  =  ( (  seq 
K (  .+  ,  G ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
6546, 64eqeq12d 2297 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq 
K (  .+  ,  G ) `  (
n  +  1 ) )  <->  ( (  seq 
M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq  K
(  .+  ,  G
) `  n )  .+  ( F `  (
n  +  1 ) ) ) ) )
6641, 65syl5ibr 212 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  K )  /\  ( n  +  1 )  e.  ( K ... N ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  n
)  =  (  seq 
K (  .+  ,  G ) `  n
)  ->  (  seq  M (  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq  K
(  .+  ,  G
) `  ( n  +  1 ) ) ) )
6766expr 598 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  +  1 )  e.  ( K ... N )  ->  (
(  seq  M (  .+  ,  F ) `  n )  =  (  seq  K (  .+  ,  G ) `  n
)  ->  (  seq  M (  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq  K
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) )
6867a2d 23 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  =  (  seq  K (  .+  ,  G ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq  M (  .+  ,  F ) `  ( n  +  1
) )  =  (  seq  K (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
6940, 68syld 40 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  K )
)  ->  ( (
n  e.  ( K ... N )  -> 
(  seq  M (  .+  ,  F ) `  n )  =  (  seq  K (  .+  ,  G ) `  n
) )  ->  (
( n  +  1 )  e.  ( K ... N )  -> 
(  seq  M (  .+  ,  F ) `  ( n  +  1
) )  =  (  seq  K (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
7069expcom 424 . . . . 5  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( ( n  e.  ( K ... N
)  ->  (  seq  M (  .+  ,  F
) `  n )  =  (  seq  K ( 
.+  ,  G ) `
 n ) )  ->  ( ( n  +  1 )  e.  ( K ... N
)  ->  (  seq  M (  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq  K
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) ) )
7170a2d 23 . . . 4  |-  ( n  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  ( n  e.  ( K ... N
)  ->  (  seq  M (  .+  ,  F
) `  n )  =  (  seq  K ( 
.+  ,  G ) `
 n ) ) )  ->  ( ph  ->  ( ( n  + 
1 )  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq  K
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) ) )
729, 15, 21, 27, 36, 71uzind4 10276 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  N )  =  (  seq  K ( 
.+  ,  G ) `
 N ) ) ) )
731, 72mpcom 32 . 2  |-  ( ph  ->  ( N  e.  ( K ... N )  ->  (  seq  M
(  .+  ,  F
) `  N )  =  (  seq  K ( 
.+  ,  G ) `
 N ) ) )
743, 73mpd 14 1  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 N )  =  (  seq  K ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255  (class class class)co 5858   1c1 8738    + caddc 8740   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046
This theorem is referenced by:  seqfeq2  11069  seqfveq  11070  seqz  11094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047
  Copyright terms: Public domain W3C validator