MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem3 Unicode version

Theorem seqomlem3 6464
Description: Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
seqomlem.a  |-  Q  =  rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)
Assertion
Ref Expression
seqomlem3  |-  ( ( Q " om ) `  (/) )  =  (  _I  `  I )
Distinct variable groups:    Q, i,
v    i, F, v
Allowed substitution hints:    I( v, i)

Proof of Theorem seqomlem3
StepHypRef Expression
1 peano1 4675 . . . . . . 7  |-  (/)  e.  om
2 fvres 5542 . . . . . . 7  |-  ( (/)  e.  om  ->  ( ( Q  |`  om ) `  (/) )  =  ( Q `
 (/) ) )
31, 2ax-mp 8 . . . . . 6  |-  ( ( Q  |`  om ) `  (/) )  =  ( Q `  (/) )
4 seqomlem.a . . . . . . 7  |-  Q  =  rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)
54fveq1i 5526 . . . . . 6  |-  ( Q `
 (/) )  =  ( rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
) `  (/) )
6 opex 4237 . . . . . . 7  |-  <. (/) ,  (  _I  `  I )
>.  e.  _V
76rdg0 6434 . . . . . 6  |-  ( rec ( ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) ,  <. (/)
,  (  _I  `  I ) >. ) `  (/) )  =  <. (/)
,  (  _I  `  I ) >.
83, 5, 73eqtri 2307 . . . . 5  |-  ( ( Q  |`  om ) `  (/) )  =  <. (/)
,  (  _I  `  I ) >.
9 frfnom 6447 . . . . . . 7  |-  ( rec ( ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) ,  <. (/)
,  (  _I  `  I ) >. )  |` 
om )  Fn  om
104reseq1i 4951 . . . . . . . 8  |-  ( Q  |`  om )  =  ( rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)  |`  om )
1110fneq1i 5338 . . . . . . 7  |-  ( ( Q  |`  om )  Fn  om  <->  ( rec (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om )  Fn  om )
129, 11mpbir 200 . . . . . 6  |-  ( Q  |`  om )  Fn  om
13 fnfvelrn 5662 . . . . . 6  |-  ( ( ( Q  |`  om )  Fn  om  /\  (/)  e.  om )  ->  ( ( Q  |`  om ) `  (/) )  e. 
ran  ( Q  |`  om ) )
1412, 1, 13mp2an 653 . . . . 5  |-  ( ( Q  |`  om ) `  (/) )  e.  ran  ( Q  |`  om )
158, 14eqeltrri 2354 . . . 4  |-  <. (/) ,  (  _I  `  I )
>.  e.  ran  ( Q  |`  om )
16 df-ima 4702 . . . 4  |-  ( Q
" om )  =  ran  ( Q  |`  om )
1715, 16eleqtrri 2356 . . 3  |-  <. (/) ,  (  _I  `  I )
>.  e.  ( Q " om )
18 df-br 4024 . . 3  |-  ( (/) ( Q " om )
(  _I  `  I
)  <->  <. (/) ,  (  _I 
`  I ) >.  e.  ( Q " om ) )
1917, 18mpbir 200 . 2  |-  (/) ( Q
" om ) (  _I  `  I )
204seqomlem2 6463 . . 3  |-  ( Q
" om )  Fn 
om
21 fnbrfvb 5563 . . 3  |-  ( ( ( Q " om )  Fn  om  /\  (/)  e.  om )  ->  ( ( ( Q " om ) `  (/) )  =  (  _I  `  I )  <->  (/) ( Q " om ) (  _I  `  I ) ) )
2220, 1, 21mp2an 653 . 2  |-  ( ( ( Q " om ) `  (/) )  =  (  _I  `  I
)  <->  (/) ( Q " om ) (  _I  `  I ) )
2319, 22mpbir 200 1  |-  ( ( Q " om ) `  (/) )  =  (  _I  `  I )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   <.cop 3643   class class class wbr 4023    _I cid 4304   suc csuc 4394   omcom 4656   ran crn 4690    |` cres 4691   "cima 4692    Fn wfn 5250   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   reccrdg 6422
This theorem is referenced by:  seqom0g  6468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-recs 6388  df-rdg 6423
  Copyright terms: Public domain W3C validator