MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem3 Unicode version

Theorem seqomlem3 6676
Description: Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
seqomlem.a  |-  Q  =  rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)
Assertion
Ref Expression
seqomlem3  |-  ( ( Q " om ) `  (/) )  =  (  _I  `  I )
Distinct variable groups:    Q, i,
v    i, F, v
Allowed substitution hints:    I( v, i)

Proof of Theorem seqomlem3
StepHypRef Expression
1 peano1 4831 . . . . . . 7  |-  (/)  e.  om
2 fvres 5712 . . . . . . 7  |-  ( (/)  e.  om  ->  ( ( Q  |`  om ) `  (/) )  =  ( Q `
 (/) ) )
31, 2ax-mp 8 . . . . . 6  |-  ( ( Q  |`  om ) `  (/) )  =  ( Q `  (/) )
4 seqomlem.a . . . . . . 7  |-  Q  =  rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)
54fveq1i 5696 . . . . . 6  |-  ( Q `
 (/) )  =  ( rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
) `  (/) )
6 opex 4395 . . . . . . 7  |-  <. (/) ,  (  _I  `  I )
>.  e.  _V
76rdg0 6646 . . . . . 6  |-  ( rec ( ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) ,  <. (/)
,  (  _I  `  I ) >. ) `  (/) )  =  <. (/)
,  (  _I  `  I ) >.
83, 5, 73eqtri 2436 . . . . 5  |-  ( ( Q  |`  om ) `  (/) )  =  <. (/)
,  (  _I  `  I ) >.
9 frfnom 6659 . . . . . . 7  |-  ( rec ( ( i  e. 
om ,  v  e. 
_V  |->  <. suc  i , 
( i F v ) >. ) ,  <. (/)
,  (  _I  `  I ) >. )  |` 
om )  Fn  om
104reseq1i 5109 . . . . . . . 8  |-  ( Q  |`  om )  =  ( rec ( ( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v ) >. ) ,  <. (/) ,  (  _I 
`  I ) >.
)  |`  om )
1110fneq1i 5506 . . . . . . 7  |-  ( ( Q  |`  om )  Fn  om  <->  ( rec (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) ,  <. (/) ,  (  _I  `  I )
>. )  |`  om )  Fn  om )
129, 11mpbir 201 . . . . . 6  |-  ( Q  |`  om )  Fn  om
13 fnfvelrn 5834 . . . . . 6  |-  ( ( ( Q  |`  om )  Fn  om  /\  (/)  e.  om )  ->  ( ( Q  |`  om ) `  (/) )  e. 
ran  ( Q  |`  om ) )
1412, 1, 13mp2an 654 . . . . 5  |-  ( ( Q  |`  om ) `  (/) )  e.  ran  ( Q  |`  om )
158, 14eqeltrri 2483 . . . 4  |-  <. (/) ,  (  _I  `  I )
>.  e.  ran  ( Q  |`  om )
16 df-ima 4858 . . . 4  |-  ( Q
" om )  =  ran  ( Q  |`  om )
1715, 16eleqtrri 2485 . . 3  |-  <. (/) ,  (  _I  `  I )
>.  e.  ( Q " om )
18 df-br 4181 . . 3  |-  ( (/) ( Q " om )
(  _I  `  I
)  <->  <. (/) ,  (  _I 
`  I ) >.  e.  ( Q " om ) )
1917, 18mpbir 201 . 2  |-  (/) ( Q
" om ) (  _I  `  I )
204seqomlem2 6675 . . 3  |-  ( Q
" om )  Fn 
om
21 fnbrfvb 5734 . . 3  |-  ( ( ( Q " om )  Fn  om  /\  (/)  e.  om )  ->  ( ( ( Q " om ) `  (/) )  =  (  _I  `  I )  <->  (/) ( Q " om ) (  _I  `  I ) ) )
2220, 1, 21mp2an 654 . 2  |-  ( ( ( Q " om ) `  (/) )  =  (  _I  `  I
)  <->  (/) ( Q " om ) (  _I  `  I ) )
2319, 22mpbir 201 1  |-  ( ( Q " om ) `  (/) )  =  (  _I  `  I )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1721   _Vcvv 2924   (/)c0 3596   <.cop 3785   class class class wbr 4180    _I cid 4461   suc csuc 4551   omcom 4812   ran crn 4846    |` cres 4847   "cima 4848    Fn wfn 5416   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   reccrdg 6634
This theorem is referenced by:  seqom0g  6680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-2nd 6317  df-recs 6600  df-rdg 6635
  Copyright terms: Public domain W3C validator