MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqval Unicode version

Theorem seqval 11057
Description: Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
seqval.1  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
Assertion
Ref Expression
seqval  |-  seq  M
(  .+  ,  F
)  =  ran  R
Distinct variable groups:    w, F, x, y, z    w,  .+ , x, y, z    x, M, y
Allowed substitution hints:    R( x, y, z, w)    M( z, w)

Proof of Theorem seqval
StepHypRef Expression
1 df-ima 4702 . 2  |-  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )  =  ran  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  |`  om )
2 df-seq 11047 . 2  |-  seq  M
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
3 seqval.1 . . . 4  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
4 eqid 2283 . . . . . . 7  |-  _V  =  _V
5 vex 2791 . . . . . . . . 9  |-  x  e. 
_V
6 vex 2791 . . . . . . . . 9  |-  y  e. 
_V
7 oveq1 5865 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
87fveq2d 5529 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
98oveq2d 5874 . . . . . . . . . 10  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
10 oveq1 5865 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
11 eqid 2283 . . . . . . . . . 10  |-  ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  _V ,  w  e.  _V  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
12 ovex 5883 . . . . . . . . . 10  |-  ( y 
.+  ( F `  ( x  +  1
) ) )  e. 
_V
139, 10, 11, 12ovmpt2 5983 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
145, 6, 13mp2an 653 . . . . . . . 8  |-  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) )
1514opeq2i 3800 . . . . . . 7  |-  <. (
x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >.  =  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.
164, 4, 15mpt2eq123i 5911 . . . . . 6  |-  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )  =  ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )
17 rdgeq1 6424 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
)  =  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  ->  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) )
1816, 17ax-mp 8 . . . . 5  |-  rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  _V ,  w  e.  _V  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )  =  rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )
1918reseq1i 4951 . . . 4  |-  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e. 
_V ,  w  e. 
_V  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. )  |`  om )  =  ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
203, 19eqtri 2303 . . 3  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
2120rneqi 4905 . 2  |-  ran  R  =  ran  ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  |`  om )
221, 2, 213eqtr4i 2313 1  |-  seq  M
(  .+  ,  F
)  =  ran  R
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   omcom 4656   ran crn 4690    |` cres 4691   "cima 4692   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   reccrdg 6422   1c1 8738    + caddc 8740    seq cseq 11046
This theorem is referenced by:  seqfn  11058  seq1  11059  seqp1  11061
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-seq 11047
  Copyright terms: Public domain W3C validator