MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqz Unicode version

Theorem seqz 11094
Description: If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqhomo.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqhomo.2  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
seqz.3  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
seqz.4  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
seqz.5  |-  ( ph  ->  K  e.  ( M ... N ) )
seqz.6  |-  ( ph  ->  N  e.  V )
seqz.7  |-  ( ph  ->  ( F `  K
)  =  Z )
Assertion
Ref Expression
seqz  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x, y, F    x, M, y    x, N, y    ph, x, y   
x, K, y    x,  .+ , y    x, S, y   
x, Z, y
Allowed substitution hints:    V( x, y)

Proof of Theorem seqz
StepHypRef Expression
1 seqz.5 . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzuz 10794 . . . 4  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
31, 2syl 15 . . 3  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 eluzelz 10238 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
53, 4syl 15 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
6 seq1 11059 . . . . . . . 8  |-  ( K  e.  ZZ  ->  (  seq  K (  .+  ,  F ) `  K
)  =  ( F `
 K ) )
75, 6syl 15 . . . . . . 7  |-  ( ph  ->  (  seq  K ( 
.+  ,  F ) `
 K )  =  ( F `  K
) )
8 seqz.7 . . . . . . 7  |-  ( ph  ->  ( F `  K
)  =  Z )
97, 8eqtrd 2315 . . . . . 6  |-  ( ph  ->  (  seq  K ( 
.+  ,  F ) `
 K )  =  Z )
10 seqeq1 11049 . . . . . . . 8  |-  ( K  =  M  ->  seq  K (  .+  ,  F
)  =  seq  M
(  .+  ,  F
) )
1110fveq1d 5527 . . . . . . 7  |-  ( K  =  M  ->  (  seq  K (  .+  ,  F ) `  K
)  =  (  seq 
M (  .+  ,  F ) `  K
) )
1211eqeq1d 2291 . . . . . 6  |-  ( K  =  M  ->  (
(  seq  K (  .+  ,  F ) `  K )  =  Z  <-> 
(  seq  M (  .+  ,  F ) `  K )  =  Z ) )
139, 12syl5ibcom 211 . . . . 5  |-  ( ph  ->  ( K  =  M  ->  (  seq  M
(  .+  ,  F
) `  K )  =  Z ) )
14 eluzel2 10235 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
153, 14syl 15 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
16 seqm1 11063 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
(  seq  M (  .+  ,  F ) `  K )  =  ( (  seq  M ( 
.+  ,  F ) `
 ( K  - 
1 ) )  .+  ( F `  K ) ) )
1715, 16sylan 457 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq  M (  .+  ,  F
) `  K )  =  ( (  seq 
M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) ) )
188adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  K )  =  Z )
1918oveq2d 5874 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) )  =  ( (  seq 
M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z ) )
20 eluzp1m1 10251 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( K  -  1 )  e.  ( ZZ>= `  M ) )
2115, 20sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( K  -  1 )  e.  ( ZZ>= `  M )
)
22 fzssp1 10834 . . . . . . . . . . . . . . 15  |-  ( M ... ( K  - 
1 ) )  C_  ( M ... ( ( K  -  1 )  +  1 ) )
235zcnd 10118 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  CC )
24 ax-1cn 8795 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
25 npcan 9060 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  - 
1 )  +  1 )  =  K )
2623, 24, 25sylancl 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( K  - 
1 )  +  1 )  =  K )
2726oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ... (
( K  -  1 )  +  1 ) )  =  ( M ... K ) )
2822, 27syl5sseq 3226 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... K ) )
29 elfzuz3 10795 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
301, 29syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
31 fzss2 10831 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( M ... K )  C_  ( M ... N ) )
3230, 31syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ... K
)  C_  ( M ... N ) )
3328, 32sstrd 3189 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
3433adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M ... ( K  -  1 ) )  C_  ( M ... N ) )
3534sselda 3180 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  x  e.  ( M ... N
) )
36 seqhomo.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  e.  S
)
3736adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... N
) )  ->  ( F `  x )  e.  S )
3835, 37syldan 456 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( K  -  1 ) ) )  ->  ( F `  x )  e.  S )
39 seqhomo.1 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4039adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4121, 38, 40seqcl 11066 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq  M (  .+  ,  F
) `  ( K  -  1 ) )  e.  S )
42 seqz.4 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
4342ralrimiva 2626 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
4443adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
45 oveq1 5865 . . . . . . . . . . 11  |-  ( x  =  (  seq  M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( x  .+  Z )  =  ( (  seq  M ( 
.+  ,  F ) `
 ( K  - 
1 ) )  .+  Z ) )
4645eqeq1d 2291 . . . . . . . . . 10  |-  ( x  =  (  seq  M
(  .+  ,  F
) `  ( K  -  1 ) )  ->  ( ( x 
.+  Z )  =  Z  <->  ( (  seq 
M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z ) )
4746rspcv 2880 . . . . . . . . 9  |-  ( (  seq  M (  .+  ,  F ) `  ( K  -  1 ) )  e.  S  -> 
( A. x  e.  S  ( x  .+  Z )  =  Z  ->  ( (  seq 
M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z ) )
4841, 44, 47sylc 56 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  ( K  -  1 ) )  .+  Z )  =  Z )
4919, 48eqtrd 2315 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq  M (  .+  ,  F ) `  ( K  -  1 ) )  .+  ( F `
 K ) )  =  Z )
5017, 49eqtrd 2315 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq  M (  .+  ,  F
) `  K )  =  Z )
5150ex 423 . . . . 5  |-  ( ph  ->  ( K  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq  M (  .+  ,  F ) `  K )  =  Z ) )
52 uzp1 10261 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  =  M  \/  K  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
533, 52syl 15 . . . . 5  |-  ( ph  ->  ( K  =  M  \/  K  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
5413, 51, 53mpjaod 370 . . . 4  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 K )  =  Z )
5554, 8eqtr4d 2318 . . 3  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 K )  =  ( F `  K
) )
56 eqidd 2284 . . 3  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  =  ( F `  x ) )
573, 55, 30, 56seqfveq2 11068 . 2  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 N )  =  (  seq  K ( 
.+  ,  F ) `
 N ) )
58 fvex 5539 . . . . . 6  |-  ( F `
 K )  e. 
_V
5958elsnc 3663 . . . . 5  |-  ( ( F `  K )  e.  { Z }  <->  ( F `  K )  =  Z )
608, 59sylibr 203 . . . 4  |-  ( ph  ->  ( F `  K
)  e.  { Z } )
61 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  x  e.  { Z } )
62 elsn 3655 . . . . . . . 8  |-  ( x  e.  { Z }  <->  x  =  Z )
6361, 62sylib 188 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  x  =  Z )
6463oveq1d 5873 . . . . . 6  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( x  .+  y )  =  ( Z  .+  y ) )
65 simprr 733 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  y  e.  S )
66 seqz.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
6766ralrimiva 2626 . . . . . . . 8  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
6867adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
69 oveq2 5866 . . . . . . . . 9  |-  ( x  =  y  ->  ( Z  .+  x )  =  ( Z  .+  y
) )
7069eqeq1d 2291 . . . . . . . 8  |-  ( x  =  y  ->  (
( Z  .+  x
)  =  Z  <->  ( Z  .+  y )  =  Z ) )
7170rspcv 2880 . . . . . . 7  |-  ( y  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  Z  ->  ( Z  .+  y )  =  Z ) )
7265, 68, 71sylc 56 . . . . . 6  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( Z  .+  y )  =  Z )
7364, 72eqtrd 2315 . . . . 5  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( x  .+  y )  =  Z )
74 ovex 5883 . . . . . 6  |-  ( x 
.+  y )  e. 
_V
7574elsnc 3663 . . . . 5  |-  ( ( x  .+  y )  e.  { Z }  <->  ( x  .+  y )  =  Z )
7673, 75sylibr 203 . . . 4  |-  ( (
ph  /\  ( x  e.  { Z }  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  { Z } )
77 peano2uz 10272 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  +  1 )  e.  ( ZZ>= `  M )
)
783, 77syl 15 . . . . . . 7  |-  ( ph  ->  ( K  +  1 )  e.  ( ZZ>= `  M ) )
79 fzss1 10830 . . . . . . 7  |-  ( ( K  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( K  +  1 ) ... N )  C_  ( M ... N ) )
8078, 79syl 15 . . . . . 6  |-  ( ph  ->  ( ( K  + 
1 ) ... N
)  C_  ( M ... N ) )
8180sselda 3180 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  x  e.  ( M ... N
) )
8281, 36syldan 456 . . . 4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  ( F `  x )  e.  S )
8360, 76, 30, 82seqcl2 11064 . . 3  |-  ( ph  ->  (  seq  K ( 
.+  ,  F ) `
 N )  e. 
{ Z } )
84 elsni 3664 . . 3  |-  ( (  seq  K (  .+  ,  F ) `  N
)  e.  { Z }  ->  (  seq  K
(  .+  ,  F
) `  N )  =  Z )
8583, 84syl 15 . 2  |-  ( ph  ->  (  seq  K ( 
.+  ,  F ) `
 N )  =  Z )
8657, 85eqtrd 2315 1  |-  ( ph  ->  (  seq  M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   {csn 3640   ` cfv 5255  (class class class)co 5858   CCcc 8735   1c1 8738    + caddc 8740    - cmin 9037   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046
This theorem is referenced by:  bcval5  11330  elqaalem2  19700  lgsne0  20572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047
  Copyright terms: Public domain W3C validator