MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcepi Unicode version

Theorem setcepi 14163
Description: An epimorphism of sets is a surjection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c  |-  C  =  ( SetCat `  U )
setcmon.u  |-  ( ph  ->  U  e.  V )
setcmon.x  |-  ( ph  ->  X  e.  U )
setcmon.y  |-  ( ph  ->  Y  e.  U )
setcepi.h  |-  E  =  (Epi `  C )
setcepi.2  |-  ( ph  ->  2o  e.  U )
Assertion
Ref Expression
setcepi  |-  ( ph  ->  ( F  e.  ( X E Y )  <-> 
F : X -onto-> Y
) )

Proof of Theorem setcepi
Dummy variables  x  g  a  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2380 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
2 eqid 2380 . . . . . 6  |-  (  Hom  `  C )  =  (  Hom  `  C )
3 eqid 2380 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
4 setcepi.h . . . . . 6  |-  E  =  (Epi `  C )
5 setcmon.u . . . . . . 7  |-  ( ph  ->  U  e.  V )
6 setcmon.c . . . . . . . 8  |-  C  =  ( SetCat `  U )
76setccat 14160 . . . . . . 7  |-  ( U  e.  V  ->  C  e.  Cat )
85, 7syl 16 . . . . . 6  |-  ( ph  ->  C  e.  Cat )
9 setcmon.x . . . . . . 7  |-  ( ph  ->  X  e.  U )
106, 5setcbas 14153 . . . . . . 7  |-  ( ph  ->  U  =  ( Base `  C ) )
119, 10eleqtrd 2456 . . . . . 6  |-  ( ph  ->  X  e.  ( Base `  C ) )
12 setcmon.y . . . . . . 7  |-  ( ph  ->  Y  e.  U )
1312, 10eleqtrd 2456 . . . . . 6  |-  ( ph  ->  Y  e.  ( Base `  C ) )
141, 2, 3, 4, 8, 11, 13epihom 13888 . . . . 5  |-  ( ph  ->  ( X E Y )  C_  ( X
(  Hom  `  C ) Y ) )
1514sselda 3284 . . . 4  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  F  e.  ( X (  Hom  `  C
) Y ) )
166, 5, 2, 9, 12elsetchom 14156 . . . . 5  |-  ( ph  ->  ( F  e.  ( X (  Hom  `  C
) Y )  <->  F : X
--> Y ) )
1716biimpa 471 . . . 4  |-  ( (
ph  /\  F  e.  ( X (  Hom  `  C
) Y ) )  ->  F : X --> Y )
1815, 17syldan 457 . . 3  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  F : X
--> Y )
19 frn 5530 . . . . 5  |-  ( F : X --> Y  ->  ran  F  C_  Y )
2018, 19syl 16 . . . 4  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ran  F  C_  Y )
21 ffn 5524 . . . . . . . . . . . . . . 15  |-  ( F : X --> Y  ->  F  Fn  X )
2218, 21syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  F  Fn  X )
23 fnfvelrn 5799 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  X  /\  x  e.  X )  ->  ( F `  x
)  e.  ran  F
)
2422, 23sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X E Y ) )  /\  x  e.  X )  ->  ( F `  x )  e.  ran  F )
25 iftrue 3681 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ran  F  ->  if ( ( F `  x )  e.  ran  F ,  1o ,  (/) )  =  1o )
2624, 25syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X E Y ) )  /\  x  e.  X )  ->  if ( ( F `  x )  e.  ran  F ,  1o ,  (/) )  =  1o )
2726mpteq2dva 4229 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( x  e.  X  |->  if ( ( F `  x
)  e.  ran  F ,  1o ,  (/) ) )  =  ( x  e.  X  |->  1o ) )
2818ffvelrnda 5802 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X E Y ) )  /\  x  e.  X )  ->  ( F `  x )  e.  Y )
2918feqmptd 5711 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  F  =  ( x  e.  X  |->  ( F `  x
) ) )
30 eqidd 2381 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  =  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) ) )
31 eleq1 2440 . . . . . . . . . . . . 13  |-  ( a  =  ( F `  x )  ->  (
a  e.  ran  F  <->  ( F `  x )  e.  ran  F ) )
3231ifbid 3693 . . . . . . . . . . . 12  |-  ( a  =  ( F `  x )  ->  if ( a  e.  ran  F ,  1o ,  (/) )  =  if (
( F `  x
)  e.  ran  F ,  1o ,  (/) ) )
3328, 29, 30, 32fmptco 5833 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( (
a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  o.  F
)  =  ( x  e.  X  |->  if ( ( F `  x
)  e.  ran  F ,  1o ,  (/) ) ) )
34 fconstmpt 4854 . . . . . . . . . . . . 13  |-  ( Y  X.  { 1o }
)  =  ( a  e.  Y  |->  1o )
3534a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( Y  X.  { 1o } )  =  ( a  e.  Y  |->  1o ) )
36 eqidd 2381 . . . . . . . . . . . 12  |-  ( a  =  ( F `  x )  ->  1o  =  1o )
3728, 29, 35, 36fmptco 5833 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( ( Y  X.  { 1o }
)  o.  F )  =  ( x  e.  X  |->  1o ) )
3827, 33, 373eqtr4d 2422 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( (
a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  o.  F
)  =  ( ( Y  X.  { 1o } )  o.  F
) )
395adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  U  e.  V )
409adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  X  e.  U )
4112adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  Y  e.  U )
42 setcepi.2 . . . . . . . . . . . 12  |-  ( ph  ->  2o  e.  U )
4342adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  2o  e.  U )
44 eqid 2380 . . . . . . . . . . . . 13  |-  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  =  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )
45 1onn 6811 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  om
4645elexi 2901 . . . . . . . . . . . . . . . . 17  |-  1o  e.  _V
4746prid2 3849 . . . . . . . . . . . . . . . 16  |-  1o  e.  {
(/) ,  1o }
48 df2o3 6666 . . . . . . . . . . . . . . . 16  |-  2o  =  { (/) ,  1o }
4947, 48eleqtrri 2453 . . . . . . . . . . . . . . 15  |-  1o  e.  2o
50 0ex 4273 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  _V
5150prid1 3848 . . . . . . . . . . . . . . . 16  |-  (/)  e.  { (/)
,  1o }
5251, 48eleqtrri 2453 . . . . . . . . . . . . . . 15  |-  (/)  e.  2o
5349, 52keepel 3732 . . . . . . . . . . . . . 14  |-  if ( a  e.  ran  F ,  1o ,  (/) )  e.  2o
5453a1i 11 . . . . . . . . . . . . 13  |-  ( a  e.  Y  ->  if ( a  e.  ran  F ,  1o ,  (/) )  e.  2o )
5544, 54fmpti 5824 . . . . . . . . . . . 12  |-  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) ) : Y --> 2o
5655a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) ) : Y --> 2o )
576, 39, 3, 40, 41, 43, 18, 56setcco 14158 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( (
a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) ) ( <. X ,  Y >. (comp `  C ) 2o ) F )  =  ( ( a  e.  Y  |->  if ( a  e. 
ran  F ,  1o ,  (/) ) )  o.  F ) )
58 fconst6g 5565 . . . . . . . . . . . 12  |-  ( 1o  e.  2o  ->  ( Y  X.  { 1o }
) : Y --> 2o )
5949, 58mp1i 12 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( Y  X.  { 1o } ) : Y --> 2o )
606, 39, 3, 40, 41, 43, 18, 59setcco 14158 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( ( Y  X.  { 1o }
) ( <. X ,  Y >. (comp `  C
) 2o ) F )  =  ( ( Y  X.  { 1o } )  o.  F
) )
6138, 57, 603eqtr4d 2422 . . . . . . . . 9  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( (
a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) ) ( <. X ,  Y >. (comp `  C ) 2o ) F )  =  ( ( Y  X.  { 1o } ) ( <. X ,  Y >. (comp `  C ) 2o ) F ) )
628adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  C  e.  Cat )
6311adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  X  e.  ( Base `  C )
)
6413adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  Y  e.  ( Base `  C )
)
6542, 10eleqtrd 2456 . . . . . . . . . . 11  |-  ( ph  ->  2o  e.  ( Base `  C ) )
6665adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  2o  e.  ( Base `  C )
)
67 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  F  e.  ( X E Y ) )
686, 39, 2, 41, 43elsetchom 14156 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( (
a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  e.  ( Y (  Hom  `  C
) 2o )  <->  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) ) : Y --> 2o ) )
6956, 68mpbird 224 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  e.  ( Y (  Hom  `  C ) 2o ) )
706, 39, 2, 41, 43elsetchom 14156 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( ( Y  X.  { 1o }
)  e.  ( Y (  Hom  `  C
) 2o )  <->  ( Y  X.  { 1o } ) : Y --> 2o ) )
7159, 70mpbird 224 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( Y  X.  { 1o } )  e.  ( Y (  Hom  `  C ) 2o ) )
721, 2, 3, 4, 62, 63, 64, 66, 67, 69, 71epii 13889 . . . . . . . . 9  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( (
( a  e.  Y  |->  if ( a  e. 
ran  F ,  1o ,  (/) ) ) (
<. X ,  Y >. (comp `  C ) 2o ) F )  =  ( ( Y  X.  { 1o } ) ( <. X ,  Y >. (comp `  C ) 2o ) F )  <->  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  =  ( Y  X.  { 1o } ) ) )
7361, 72mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  =  ( Y  X.  { 1o } ) )
7473, 34syl6eq 2428 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  =  ( a  e.  Y  |->  1o ) )
7553rgenw 2709 . . . . . . . 8  |-  A. a  e.  Y  if (
a  e.  ran  F ,  1o ,  (/) )  e.  2o
76 mpteqb 5751 . . . . . . . 8  |-  ( A. a  e.  Y  if ( a  e.  ran  F ,  1o ,  (/) )  e.  2o  ->  ( ( a  e.  Y  |->  if ( a  e. 
ran  F ,  1o ,  (/) ) )  =  ( a  e.  Y  |->  1o )  <->  A. a  e.  Y  if (
a  e.  ran  F ,  1o ,  (/) )  =  1o ) )
7775, 76ax-mp 8 . . . . . . 7  |-  ( ( a  e.  Y  |->  if ( a  e.  ran  F ,  1o ,  (/) ) )  =  ( a  e.  Y  |->  1o )  <->  A. a  e.  Y  if ( a  e.  ran  F ,  1o ,  (/) )  =  1o )
7874, 77sylib 189 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  A. a  e.  Y  if (
a  e.  ran  F ,  1o ,  (/) )  =  1o )
79 1n0 6668 . . . . . . . . . . 11  |-  1o  =/=  (/)
8079necomi 2625 . . . . . . . . . 10  |-  (/)  =/=  1o
81 df-ne 2545 . . . . . . . . . 10  |-  ( (/)  =/=  1o  <->  -.  (/)  =  1o )
8280, 81mpbi 200 . . . . . . . . 9  |-  -.  (/)  =  1o
83 iffalse 3682 . . . . . . . . . 10  |-  ( -.  a  e.  ran  F  ->  if ( a  e. 
ran  F ,  1o ,  (/) )  =  (/) )
8483eqeq1d 2388 . . . . . . . . 9  |-  ( -.  a  e.  ran  F  ->  ( if ( a  e.  ran  F ,  1o ,  (/) )  =  1o  <->  (/)  =  1o ) )
8582, 84mtbiri 295 . . . . . . . 8  |-  ( -.  a  e.  ran  F  ->  -.  if ( a  e.  ran  F ,  1o ,  (/) )  =  1o )
8685con4i 124 . . . . . . 7  |-  ( if ( a  e.  ran  F ,  1o ,  (/) )  =  1o  ->  a  e.  ran  F )
8786ralimi 2717 . . . . . 6  |-  ( A. a  e.  Y  if ( a  e.  ran  F ,  1o ,  (/) )  =  1o  ->  A. a  e.  Y  a  e.  ran  F )
8878, 87syl 16 . . . . 5  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  A. a  e.  Y  a  e.  ran  F )
89 dfss3 3274 . . . . 5  |-  ( Y 
C_  ran  F  <->  A. a  e.  Y  a  e.  ran  F )
9088, 89sylibr 204 . . . 4  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  Y  C_  ran  F )
9120, 90eqssd 3301 . . 3  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  ran  F  =  Y )
92 dffo2 5590 . . 3  |-  ( F : X -onto-> Y  <->  ( F : X --> Y  /\  ran  F  =  Y ) )
9318, 91, 92sylanbrc 646 . 2  |-  ( (
ph  /\  F  e.  ( X E Y ) )  ->  F : X -onto-> Y )
94 fof 5586 . . . . 5  |-  ( F : X -onto-> Y  ->  F : X --> Y )
9594adantl 453 . . . 4  |-  ( (
ph  /\  F : X -onto-> Y )  ->  F : X --> Y )
9616biimpar 472 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  F  e.  ( X (  Hom  `  C ) Y ) )
9795, 96syldan 457 . . 3  |-  ( (
ph  /\  F : X -onto-> Y )  ->  F  e.  ( X (  Hom  `  C ) Y ) )
9810adantr 452 . . . . . 6  |-  ( (
ph  /\  F : X -onto-> Y )  ->  U  =  ( Base `  C
) )
9998eleq2d 2447 . . . . 5  |-  ( (
ph  /\  F : X -onto-> Y )  ->  (
z  e.  U  <->  z  e.  ( Base `  C )
) )
1005ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  U  e.  V )
1019ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  X  e.  U )
10212ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  Y  e.  U )
103 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  z  e.  U )
10495adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  F : X
--> Y )
105 simprrl 741 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  g  e.  ( Y (  Hom  `  C
) z ) )
1066, 100, 2, 102, 103elsetchom 14156 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( g  e.  ( Y (  Hom  `  C ) z )  <-> 
g : Y --> z ) )
107105, 106mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  g : Y
--> z )
1086, 100, 3, 101, 102, 103, 104, 107setcco 14158 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( g
( <. X ,  Y >. (comp `  C )
z ) F )  =  ( g  o.  F ) )
109 simprrr 742 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  h  e.  ( Y (  Hom  `  C
) z ) )
1106, 100, 2, 102, 103elsetchom 14156 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( h  e.  ( Y (  Hom  `  C ) z )  <-> 
h : Y --> z ) )
111109, 110mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  h : Y
--> z )
1126, 100, 3, 101, 102, 103, 104, 111setcco 14158 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( h
( <. X ,  Y >. (comp `  C )
z ) F )  =  ( h  o.  F ) )
113108, 112eqeq12d 2394 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( (
g ( <. X ,  Y >. (comp `  C
) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C )
z ) F )  <-> 
( g  o.  F
)  =  ( h  o.  F ) ) )
114 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  F : X -onto-> Y )
115 ffn 5524 . . . . . . . . . . . 12  |-  ( g : Y --> z  -> 
g  Fn  Y )
116107, 115syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  g  Fn  Y )
117 ffn 5524 . . . . . . . . . . . 12  |-  ( h : Y --> z  ->  h  Fn  Y )
118111, 117syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  h  Fn  Y )
119 cocan2 5957 . . . . . . . . . . 11  |-  ( ( F : X -onto-> Y  /\  g  Fn  Y  /\  h  Fn  Y
)  ->  ( (
g  o.  F )  =  ( h  o.  F )  <->  g  =  h ) )
120114, 116, 118, 119syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( (
g  o.  F )  =  ( h  o.  F )  <->  g  =  h ) )
121120biimpd 199 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( (
g  o.  F )  =  ( h  o.  F )  ->  g  =  h ) )
122113, 121sylbid 207 . . . . . . . 8  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  (
z  e.  U  /\  ( g  e.  ( Y (  Hom  `  C
) z )  /\  h  e.  ( Y
(  Hom  `  C ) z ) ) ) )  ->  ( (
g ( <. X ,  Y >. (comp `  C
) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C )
z ) F )  ->  g  =  h ) )
123122anassrs 630 . . . . . . 7  |-  ( ( ( ( ph  /\  F : X -onto-> Y )  /\  z  e.  U
)  /\  ( g  e.  ( Y (  Hom  `  C ) z )  /\  h  e.  ( Y (  Hom  `  C
) z ) ) )  ->  ( (
g ( <. X ,  Y >. (comp `  C
) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C )
z ) F )  ->  g  =  h ) )
124123ralrimivva 2734 . . . . . 6  |-  ( ( ( ph  /\  F : X -onto-> Y )  /\  z  e.  U )  ->  A. g  e.  ( Y (  Hom  `  C ) z ) A. h  e.  ( Y (  Hom  `  C
) z ) ( ( g ( <. X ,  Y >. (comp `  C ) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C
) z ) F )  ->  g  =  h ) )
125124ex 424 . . . . 5  |-  ( (
ph  /\  F : X -onto-> Y )  ->  (
z  e.  U  ->  A. g  e.  ( Y (  Hom  `  C
) z ) A. h  e.  ( Y
(  Hom  `  C ) z ) ( ( g ( <. X ,  Y >. (comp `  C
) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C )
z ) F )  ->  g  =  h ) ) )
12699, 125sylbird 227 . . . 4  |-  ( (
ph  /\  F : X -onto-> Y )  ->  (
z  e.  ( Base `  C )  ->  A. g  e.  ( Y (  Hom  `  C ) z ) A. h  e.  ( Y (  Hom  `  C
) z ) ( ( g ( <. X ,  Y >. (comp `  C ) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C
) z ) F )  ->  g  =  h ) ) )
127126ralrimiv 2724 . . 3  |-  ( (
ph  /\  F : X -onto-> Y )  ->  A. z  e.  ( Base `  C
) A. g  e.  ( Y (  Hom  `  C ) z ) A. h  e.  ( Y (  Hom  `  C
) z ) ( ( g ( <. X ,  Y >. (comp `  C ) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C
) z ) F )  ->  g  =  h ) )
1281, 2, 3, 4, 8, 11, 13isepi2 13887 . . . 4  |-  ( ph  ->  ( F  e.  ( X E Y )  <-> 
( F  e.  ( X (  Hom  `  C
) Y )  /\  A. z  e.  ( Base `  C ) A. g  e.  ( Y (  Hom  `  C ) z ) A. h  e.  ( Y (  Hom  `  C
) z ) ( ( g ( <. X ,  Y >. (comp `  C ) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C
) z ) F )  ->  g  =  h ) ) ) )
129128adantr 452 . . 3  |-  ( (
ph  /\  F : X -onto-> Y )  ->  ( F  e.  ( X E Y )  <->  ( F  e.  ( X (  Hom  `  C ) Y )  /\  A. z  e.  ( Base `  C
) A. g  e.  ( Y (  Hom  `  C ) z ) A. h  e.  ( Y (  Hom  `  C
) z ) ( ( g ( <. X ,  Y >. (comp `  C ) z ) F )  =  ( h ( <. X ,  Y >. (comp `  C
) z ) F )  ->  g  =  h ) ) ) )
13097, 127, 129mpbir2and 889 . 2  |-  ( (
ph  /\  F : X -onto-> Y )  ->  F  e.  ( X E Y ) )
13193, 130impbida 806 1  |-  ( ph  ->  ( F  e.  ( X E Y )  <-> 
F : X -onto-> Y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642    C_ wss 3256   (/)c0 3564   ifcif 3675   {csn 3750   {cpr 3751   <.cop 3753    e. cmpt 4200   omcom 4778    X. cxp 4809   ran crn 4812    o. ccom 4815    Fn wfn 5382   -->wf 5383   -onto->wfo 5385   ` cfv 5387  (class class class)co 6013   1oc1o 6646   2oc2o 6647   Basecbs 13389    Hom chom 13460  compcco 13461   Catccat 13809  Epicepi 13875   SetCatcsetc 14150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-hom 13473  df-cco 13474  df-cat 13813  df-cid 13814  df-oppc 13858  df-mon 13876  df-epi 13877  df-setc 14151
  Copyright terms: Public domain W3C validator