MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcmon Unicode version

Theorem setcmon 13935
Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c  |-  C  =  ( SetCat `  U )
setcmon.u  |-  ( ph  ->  U  e.  V )
setcmon.x  |-  ( ph  ->  X  e.  U )
setcmon.y  |-  ( ph  ->  Y  e.  U )
setcmon.h  |-  M  =  (Mono `  C )
Assertion
Ref Expression
setcmon  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
F : X -1-1-> Y
) )

Proof of Theorem setcmon
Dummy variables  x  g  h  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
2 eqid 2296 . . . . . 6  |-  (  Hom  `  C )  =  (  Hom  `  C )
3 eqid 2296 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
4 setcmon.h . . . . . 6  |-  M  =  (Mono `  C )
5 setcmon.u . . . . . . 7  |-  ( ph  ->  U  e.  V )
6 setcmon.c . . . . . . . 8  |-  C  =  ( SetCat `  U )
76setccat 13933 . . . . . . 7  |-  ( U  e.  V  ->  C  e.  Cat )
85, 7syl 15 . . . . . 6  |-  ( ph  ->  C  e.  Cat )
9 setcmon.x . . . . . . 7  |-  ( ph  ->  X  e.  U )
106, 5setcbas 13926 . . . . . . 7  |-  ( ph  ->  U  =  ( Base `  C ) )
119, 10eleqtrd 2372 . . . . . 6  |-  ( ph  ->  X  e.  ( Base `  C ) )
12 setcmon.y . . . . . . 7  |-  ( ph  ->  Y  e.  U )
1312, 10eleqtrd 2372 . . . . . 6  |-  ( ph  ->  Y  e.  ( Base `  C ) )
141, 2, 3, 4, 8, 11, 13monhom 13654 . . . . 5  |-  ( ph  ->  ( X M Y )  C_  ( X
(  Hom  `  C ) Y ) )
1514sselda 3193 . . . 4  |-  ( (
ph  /\  F  e.  ( X M Y ) )  ->  F  e.  ( X (  Hom  `  C
) Y ) )
166, 5, 2, 9, 12elsetchom 13929 . . . . 5  |-  ( ph  ->  ( F  e.  ( X (  Hom  `  C
) Y )  <->  F : X
--> Y ) )
1716biimpa 470 . . . 4  |-  ( (
ph  /\  F  e.  ( X (  Hom  `  C
) Y ) )  ->  F : X --> Y )
1815, 17syldan 456 . . 3  |-  ( (
ph  /\  F  e.  ( X M Y ) )  ->  F : X
--> Y )
19 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
2019sneqd 3666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  { ( F `  x ) }  =  { ( F `  y ) } )
2120xpeq2d 4729 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( X  X.  { ( F `
 x ) } )  =  ( X  X.  { ( F `
 y ) } ) )
2218adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F : X --> Y )
23 ffn 5405 . . . . . . . . . . . 12  |-  ( F : X --> Y  ->  F  Fn  X )
2422, 23syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  Fn  X )
25 simprll 738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  e.  X )
26 fcoconst 5711 . . . . . . . . . . 11  |-  ( ( F  Fn  X  /\  x  e.  X )  ->  ( F  o.  ( X  X.  { x }
) )  =  ( X  X.  { ( F `  x ) } ) )
2724, 25, 26syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F  o.  ( X  X.  { x } ) )  =  ( X  X.  { ( F `
 x ) } ) )
28 simprlr 739 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  y  e.  X )
29 fcoconst 5711 . . . . . . . . . . 11  |-  ( ( F  Fn  X  /\  y  e.  X )  ->  ( F  o.  ( X  X.  { y } ) )  =  ( X  X.  { ( F `  y ) } ) )
3024, 28, 29syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F  o.  ( X  X.  { y } ) )  =  ( X  X.  { ( F `
 y ) } ) )
3121, 27, 303eqtr4d 2338 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F  o.  ( X  X.  { x } ) )  =  ( F  o.  ( X  X.  { y } ) ) )
325ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  U  e.  V )
339ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  X  e.  U )
349adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X M Y ) )  ->  X  e.  U )
3534adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  X  e.  U )
3612adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X M Y ) )  ->  Y  e.  U )
3736adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  Y  e.  U )
38 fconst6g 5446 . . . . . . . . . . 11  |-  ( x  e.  X  ->  ( X  X.  { x }
) : X --> X )
3925, 38syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( X  X.  { x }
) : X --> X )
406, 32, 3, 33, 35, 37, 39, 22setcco 13931 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F ( <. X ,  X >. (comp `  C
) Y ) ( X  X.  { x } ) )  =  ( F  o.  ( X  X.  { x }
) ) )
41 fconst6g 5446 . . . . . . . . . . 11  |-  ( y  e.  X  ->  ( X  X.  { y } ) : X --> X )
4228, 41syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( X  X.  { y } ) : X --> X )
436, 32, 3, 33, 35, 37, 42, 22setcco 13931 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F ( <. X ,  X >. (comp `  C
) Y ) ( X  X.  { y } ) )  =  ( F  o.  ( X  X.  { y } ) ) )
4431, 40, 433eqtr4d 2338 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( F ( <. X ,  X >. (comp `  C
) Y ) ( X  X.  { x } ) )  =  ( F ( <. X ,  X >. (comp `  C ) Y ) ( X  X.  {
y } ) ) )
458ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  C  e.  Cat )
4611ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  X  e.  ( Base `  C
) )
4713ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  Y  e.  ( Base `  C
) )
48 simplr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  F  e.  ( X M Y ) )
496, 32, 2, 33, 35elsetchom 13929 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( X  X.  {
x } )  e.  ( X (  Hom  `  C ) X )  <-> 
( X  X.  {
x } ) : X --> X ) )
5039, 49mpbird 223 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( X  X.  { x }
)  e.  ( X (  Hom  `  C
) X ) )
516, 32, 2, 33, 35elsetchom 13929 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( X  X.  {
y } )  e.  ( X (  Hom  `  C ) X )  <-> 
( X  X.  {
y } ) : X --> X ) )
5242, 51mpbird 223 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( X  X.  { y } )  e.  ( X (  Hom  `  C
) X ) )
531, 2, 3, 4, 45, 46, 47, 46, 48, 50, 52moni 13655 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( F ( <. X ,  X >. (comp `  C ) Y ) ( X  X.  {
x } ) )  =  ( F (
<. X ,  X >. (comp `  C ) Y ) ( X  X.  {
y } ) )  <-> 
( X  X.  {
x } )  =  ( X  X.  {
y } ) ) )
5444, 53mpbid 201 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  ( X  X.  { x }
)  =  ( X  X.  { y } ) )
5554fveq1d 5543 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( X  X.  {
x } ) `  x )  =  ( ( X  X.  {
y } ) `  x ) )
56 vex 2804 . . . . . . . 8  |-  x  e. 
_V
5756fvconst2 5745 . . . . . . 7  |-  ( x  e.  X  ->  (
( X  X.  {
x } ) `  x )  =  x )
5825, 57syl 15 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( X  X.  {
x } ) `  x )  =  x )
59 vex 2804 . . . . . . . 8  |-  y  e. 
_V
6059fvconst2 5745 . . . . . . 7  |-  ( x  e.  X  ->  (
( X  X.  {
y } ) `  x )  =  y )
6125, 60syl 15 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  (
( X  X.  {
y } ) `  x )  =  y )
6255, 58, 613eqtr3d 2336 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
( x  e.  X  /\  y  e.  X
)  /\  ( F `  x )  =  ( F `  y ) ) )  ->  x  =  y )
6362expr 598 . . . 4  |-  ( ( ( ph  /\  F  e.  ( X M Y ) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6463ralrimivva 2648 . . 3  |-  ( (
ph  /\  F  e.  ( X M Y ) )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
65 dff13 5799 . . 3  |-  ( F : X -1-1-> Y  <->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6618, 64, 65sylanbrc 645 . 2  |-  ( (
ph  /\  F  e.  ( X M Y ) )  ->  F : X -1-1-> Y )
67 f1f 5453 . . . 4  |-  ( F : X -1-1-> Y  ->  F : X --> Y )
6816biimpar 471 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  F  e.  ( X (  Hom  `  C ) Y ) )
6967, 68sylan2 460 . . 3  |-  ( (
ph  /\  F : X -1-1-> Y )  ->  F  e.  ( X
(  Hom  `  C ) Y ) )
7010adantr 451 . . . . . 6  |-  ( (
ph  /\  F : X -1-1-> Y )  ->  U  =  ( Base `  C ) )
7170eleq2d 2363 . . . . 5  |-  ( (
ph  /\  F : X -1-1-> Y )  -> 
( z  e.  U  <->  z  e.  ( Base `  C
) ) )
725ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  U  e.  V )
73 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  z  e.  U )
749ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  X  e.  U )
7512ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  Y  e.  U )
76 simprrl 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  g  e.  ( z (  Hom  `  C ) X ) )
776, 72, 2, 73, 74elsetchom 13929 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( g  e.  ( z (  Hom  `  C ) X )  <-> 
g : z --> X ) )
7876, 77mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  g :
z --> X )
7967ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  F : X
--> Y )
806, 72, 3, 73, 74, 75, 78, 79setcco 13931 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( F
( <. z ,  X >. (comp `  C ) Y ) g )  =  ( F  o.  g ) )
81 simprrr 741 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  h  e.  ( z (  Hom  `  C ) X ) )
826, 72, 2, 73, 74elsetchom 13929 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( h  e.  ( z (  Hom  `  C ) X )  <-> 
h : z --> X ) )
8381, 82mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  h :
z --> X )
846, 72, 3, 73, 74, 75, 83, 79setcco 13931 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( F
( <. z ,  X >. (comp `  C ) Y ) h )  =  ( F  o.  h ) )
8580, 84eqeq12d 2310 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( ( F ( <. z ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C ) Y ) h )  <-> 
( F  o.  g
)  =  ( F  o.  h ) ) )
86 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  F : X -1-1-> Y )
87 cocan1 5817 . . . . . . . . . . 11  |-  ( ( F : X -1-1-> Y  /\  g : z --> X  /\  h : z --> X )  ->  (
( F  o.  g
)  =  ( F  o.  h )  <->  g  =  h ) )
8886, 78, 83, 87syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( ( F  o.  g )  =  ( F  o.  h )  <->  g  =  h ) )
8988biimpd 198 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( ( F  o.  g )  =  ( F  o.  h )  ->  g  =  h ) )
9085, 89sylbid 206 . . . . . . . 8  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  ( z  e.  U  /\  ( g  e.  ( z (  Hom  `  C
) X )  /\  h  e.  ( z
(  Hom  `  C ) X ) ) ) )  ->  ( ( F ( <. z ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) )
9190anassrs 629 . . . . . . 7  |-  ( ( ( ( ph  /\  F : X -1-1-> Y )  /\  z  e.  U
)  /\  ( g  e.  ( z (  Hom  `  C ) X )  /\  h  e.  ( z (  Hom  `  C
) X ) ) )  ->  ( ( F ( <. z ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) )
9291ralrimivva 2648 . . . . . 6  |-  ( ( ( ph  /\  F : X -1-1-> Y )  /\  z  e.  U )  ->  A. g  e.  ( z (  Hom  `  C
) X ) A. h  e.  ( z
(  Hom  `  C ) X ) ( ( F ( <. z ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) )
9392ex 423 . . . . 5  |-  ( (
ph  /\  F : X -1-1-> Y )  -> 
( z  e.  U  ->  A. g  e.  ( z (  Hom  `  C
) X ) A. h  e.  ( z
(  Hom  `  C ) X ) ( ( F ( <. z ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) ) )
9471, 93sylbird 226 . . . 4  |-  ( (
ph  /\  F : X -1-1-> Y )  -> 
( z  e.  (
Base `  C )  ->  A. g  e.  ( z (  Hom  `  C
) X ) A. h  e.  ( z
(  Hom  `  C ) X ) ( ( F ( <. z ,  X >. (comp `  C
) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C ) Y ) h )  ->  g  =  h ) ) )
9594ralrimiv 2638 . . 3  |-  ( (
ph  /\  F : X -1-1-> Y )  ->  A. z  e.  ( Base `  C ) A. g  e.  ( z
(  Hom  `  C ) X ) A. h  e.  ( z (  Hom  `  C ) X ) ( ( F (
<. z ,  X >. (comp `  C ) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C
) Y ) h )  ->  g  =  h ) )
961, 2, 3, 4, 8, 11, 13ismon2 13653 . . . 4  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
( F  e.  ( X (  Hom  `  C
) Y )  /\  A. z  e.  ( Base `  C ) A. g  e.  ( z (  Hom  `  C ) X ) A. h  e.  ( z (  Hom  `  C
) X ) ( ( F ( <.
z ,  X >. (comp `  C ) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C
) Y ) h )  ->  g  =  h ) ) ) )
9796adantr 451 . . 3  |-  ( (
ph  /\  F : X -1-1-> Y )  -> 
( F  e.  ( X M Y )  <-> 
( F  e.  ( X (  Hom  `  C
) Y )  /\  A. z  e.  ( Base `  C ) A. g  e.  ( z (  Hom  `  C ) X ) A. h  e.  ( z (  Hom  `  C
) X ) ( ( F ( <.
z ,  X >. (comp `  C ) Y ) g )  =  ( F ( <. z ,  X >. (comp `  C
) Y ) h )  ->  g  =  h ) ) ) )
9869, 95, 97mpbir2and 888 . 2  |-  ( (
ph  /\  F : X -1-1-> Y )  ->  F  e.  ( X M Y ) )
9966, 98impbida 805 1  |-  ( ph  ->  ( F  e.  ( X M Y )  <-> 
F : X -1-1-> Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {csn 3653   <.cop 3656    X. cxp 4703    o. ccom 4709    Fn wfn 5266   -->wf 5267   -1-1->wf1 5268   ` cfv 5271  (class class class)co 5874   Basecbs 13164    Hom chom 13235  compcco 13236   Catccat 13582  Monocmon 13647   SetCatcsetc 13923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-hom 13248  df-cco 13249  df-cat 13586  df-cid 13587  df-mon 13649  df-setc 13924
  Copyright terms: Public domain W3C validator