Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Unicode version

Theorem setinds 24205
Description: Principle of  _E induction (set induction). If a property passes from all elements of  x to  x itself, then it holds for all  x. (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1  |-  ( A. y  e.  x  [. y  /  x ]. ph  ->  ph )
Assertion
Ref Expression
setinds  |-  ph
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem setinds
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2804 . 2  |-  x  e. 
_V
2 setind 7435 . . . . 5  |-  ( A. z ( z  C_  { x  |  ph }  ->  z  e.  { x  |  ph } )  ->  { x  |  ph }  =  _V )
3 dfss3 3183 . . . . . . 7  |-  ( z 
C_  { x  | 
ph }  <->  A. y  e.  z  y  e.  { x  |  ph }
)
4 df-sbc 3005 . . . . . . . . 9  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
54ralbii 2580 . . . . . . . 8  |-  ( A. y  e.  z  [. y  /  x ]. ph  <->  A. y  e.  z  y  e.  { x  |  ph }
)
6 nfcv 2432 . . . . . . . . . . 11  |-  F/_ x
z
7 nfsbc1v 3023 . . . . . . . . . . 11  |-  F/ x [. y  /  x ]. ph
86, 7nfral 2609 . . . . . . . . . 10  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
9 nfsbc1v 3023 . . . . . . . . . 10  |-  F/ x [. z  /  x ]. ph
108, 9nfim 1781 . . . . . . . . 9  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
11 raleq 2749 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
12 sbceq1a 3014 . . . . . . . . . 10  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1311, 12imbi12d 311 . . . . . . . . 9  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
14 setinds.1 . . . . . . . . 9  |-  ( A. y  e.  x  [. y  /  x ]. ph  ->  ph )
1510, 13, 14chvar 1939 . . . . . . . 8  |-  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
165, 15sylbir 204 . . . . . . 7  |-  ( A. y  e.  z  y  e.  { x  |  ph }  ->  [. z  /  x ]. ph )
173, 16sylbi 187 . . . . . 6  |-  ( z 
C_  { x  | 
ph }  ->  [. z  /  x ]. ph )
18 df-sbc 3005 . . . . . 6  |-  ( [. z  /  x ]. ph  <->  z  e.  { x  |  ph }
)
1917, 18sylib 188 . . . . 5  |-  ( z 
C_  { x  | 
ph }  ->  z  e.  { x  |  ph } )
202, 19mpg 1538 . . . 4  |-  { x  |  ph }  =  _V
2120eqcomi 2300 . . 3  |-  _V  =  { x  |  ph }
2221abeq2i 2403 . 2  |-  ( x  e.  _V  <->  ph )
231, 22mpbi 199 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   _Vcvv 2801   [.wsbc 3004    C_ wss 3165
This theorem is referenced by:  setinds2f  24206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator