Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setindtrs Unicode version

Theorem setindtrs 27118
Description: Epsilon induction scheme without Infinity. See comments at setindtr 27117. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Hypotheses
Ref Expression
setindtrs.a  |-  ( A. y  e.  x  ps  ->  ph )
setindtrs.b  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
setindtrs.c  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
setindtrs  |-  ( E. z ( Tr  z  /\  B  e.  z
)  ->  ch )
Distinct variable groups:    x, B, z    ph, y    ps, x    ch, x    ph, z    x, y
Allowed substitution hints:    ph( x)    ps( y, z)    ch( y, z)    B( y)

Proof of Theorem setindtrs
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 setindtr 27117 . . 3  |-  ( A. a ( a  C_  { x  |  ph }  ->  a  e.  { x  |  ph } )  -> 
( E. z ( Tr  z  /\  B  e.  z )  ->  B  e.  { x  |  ph } ) )
2 dfss3 3170 . . . 4  |-  ( a 
C_  { x  | 
ph }  <->  A. y  e.  a  y  e.  { x  |  ph }
)
3 nfcv 2419 . . . . . . 7  |-  F/_ x
a
4 nfsab1 2273 . . . . . . 7  |-  F/ x  y  e.  { x  |  ph }
53, 4nfral 2596 . . . . . 6  |-  F/ x A. y  e.  a 
y  e.  { x  |  ph }
6 nfsab1 2273 . . . . . 6  |-  F/ x  a  e.  { x  |  ph }
75, 6nfim 1769 . . . . 5  |-  F/ x
( A. y  e.  a  y  e.  {
x  |  ph }  ->  a  e.  { x  |  ph } )
8 raleq 2736 . . . . . 6  |-  ( x  =  a  ->  ( A. y  e.  x  y  e.  { x  |  ph }  <->  A. y  e.  a  y  e.  { x  |  ph }
) )
9 eleq1 2343 . . . . . 6  |-  ( x  =  a  ->  (
x  e.  { x  |  ph }  <->  a  e.  { x  |  ph }
) )
108, 9imbi12d 311 . . . . 5  |-  ( x  =  a  ->  (
( A. y  e.  x  y  e.  {
x  |  ph }  ->  x  e.  { x  |  ph } )  <->  ( A. y  e.  a  y  e.  { x  |  ph }  ->  a  e.  {
x  |  ph }
) ) )
11 setindtrs.a . . . . . 6  |-  ( A. y  e.  x  ps  ->  ph )
12 vex 2791 . . . . . . . 8  |-  y  e. 
_V
13 setindtrs.b . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1412, 13elab 2914 . . . . . . 7  |-  ( y  e.  { x  | 
ph }  <->  ps )
1514ralbii 2567 . . . . . 6  |-  ( A. y  e.  x  y  e.  { x  |  ph } 
<-> 
A. y  e.  x  ps )
16 abid 2271 . . . . . 6  |-  ( x  e.  { x  | 
ph }  <->  ph )
1711, 15, 163imtr4i 257 . . . . 5  |-  ( A. y  e.  x  y  e.  { x  |  ph }  ->  x  e.  {
x  |  ph }
)
187, 10, 17chvar 1926 . . . 4  |-  ( A. y  e.  a  y  e.  { x  |  ph }  ->  a  e.  {
x  |  ph }
)
192, 18sylbi 187 . . 3  |-  ( a 
C_  { x  | 
ph }  ->  a  e.  { x  |  ph } )
201, 19mpg 1535 . 2  |-  ( E. z ( Tr  z  /\  B  e.  z
)  ->  B  e.  { x  |  ph }
)
21 elex 2796 . . . . 5  |-  ( B  e.  z  ->  B  e.  _V )
2221adantl 452 . . . 4  |-  ( ( Tr  z  /\  B  e.  z )  ->  B  e.  _V )
2322exlimiv 1666 . . 3  |-  ( E. z ( Tr  z  /\  B  e.  z
)  ->  B  e.  _V )
24 setindtrs.c . . . 4  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
2524elabg 2915 . . 3  |-  ( B  e.  _V  ->  ( B  e.  { x  |  ph }  <->  ch )
)
2623, 25syl 15 . 2  |-  ( E. z ( Tr  z  /\  B  e.  z
)  ->  ( B  e.  { x  |  ph } 
<->  ch ) )
2720, 26mpbid 201 1  |-  ( E. z ( Tr  z  /\  B  e.  z
)  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   _Vcvv 2788    C_ wss 3152   Tr wtr 4113
This theorem is referenced by:  dford3lem2  27120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3456  df-uni 3828  df-tr 4114
  Copyright terms: Public domain W3C validator