MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsres Unicode version

Theorem setsres 13190
Description: The structure replacement function does not affect the value of  S away from  A. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsres  |-  ( S  e.  V  ->  (
( S sSet  <. A ,  B >. )  |`  ( _V  \  { A }
) )  =  ( S  |`  ( _V  \  { A } ) ) )

Proof of Theorem setsres
StepHypRef Expression
1 opex 4253 . . . 4  |-  <. A ,  B >.  e.  _V
2 setsvalg 13187 . . . 4  |-  ( ( S  e.  V  /\  <. A ,  B >.  e. 
_V )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } ) )
31, 2mpan2 652 . . 3  |-  ( S  e.  V  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } ) )
43reseq1d 4970 . 2  |-  ( S  e.  V  ->  (
( S sSet  <. A ,  B >. )  |`  ( _V  \  { A }
) )  =  ( ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } )  |`  ( _V  \  { A } ) ) )
5 resundir 4986 . . 3  |-  ( ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  |`  ( _V  \  { A }
) )  u.  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) ) )
6 dmsnopss 5161 . . . . . . 7  |-  dom  { <. A ,  B >. } 
C_  { A }
7 sscon 3323 . . . . . . 7  |-  ( dom 
{ <. A ,  B >. }  C_  { A }  ->  ( _V  \  { A } )  C_  ( _V  \  dom  { <. A ,  B >. } ) )
86, 7ax-mp 8 . . . . . 6  |-  ( _V 
\  { A }
)  C_  ( _V  \  dom  { <. A ,  B >. } )
9 resabs1 5000 . . . . . 6  |-  ( ( _V  \  { A } )  C_  ( _V  \  dom  { <. A ,  B >. } )  ->  ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  |`  ( _V  \  { A }
) )  =  ( S  |`  ( _V  \  { A } ) ) )
108, 9ax-mp 8 . . . . 5  |-  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) )
11 dmres 4992 . . . . . . 7  |-  dom  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )  =  ( ( _V  \  { A } )  i^i  dom  {
<. A ,  B >. } )
12 disj2 3515 . . . . . . . 8  |-  ( ( ( _V  \  { A } )  i^i  dom  {
<. A ,  B >. } )  =  (/)  <->  ( _V  \  { A } ) 
C_  ( _V  \  dom  { <. A ,  B >. } ) )
138, 12mpbir 200 . . . . . . 7  |-  ( ( _V  \  { A } )  i^i  dom  {
<. A ,  B >. } )  =  (/)
1411, 13eqtri 2316 . . . . . 6  |-  dom  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/)
15 relres 4999 . . . . . . 7  |-  Rel  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )
16 reldm0 4912 . . . . . . 7  |-  ( Rel  ( { <. A ,  B >. }  |`  ( _V  \  { A }
) )  ->  (
( { <. A ,  B >. }  |`  ( _V  \  { A }
) )  =  (/)  <->  dom  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/) ) )
1715, 16ax-mp 8 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/)  <->  dom  ( {
<. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/) )
1814, 17mpbir 200 . . . . 5  |-  ( {
<. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/)
1910, 18uneq12i 3340 . . . 4  |-  ( ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  |`  ( _V  \  { A } ) )  u.  ( {
<. A ,  B >. }  |`  ( _V  \  { A } ) ) )  =  ( ( S  |`  ( _V  \  { A } ) )  u.  (/) )
20 un0 3492 . . . 4  |-  ( ( S  |`  ( _V  \  { A } ) )  u.  (/) )  =  ( S  |`  ( _V  \  { A }
) )
2119, 20eqtri 2316 . . 3  |-  ( ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  |`  ( _V  \  { A } ) )  u.  ( {
<. A ,  B >. }  |`  ( _V  \  { A } ) ) )  =  ( S  |`  ( _V  \  { A } ) )
225, 21eqtri 2316 . 2  |-  ( ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) )
234, 22syl6eq 2344 1  |-  ( S  e.  V  ->  (
( S sSet  <. A ,  B >. )  |`  ( _V  \  { A }
) )  =  ( S  |`  ( _V  \  { A } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656   dom cdm 4705    |` cres 4707   Rel wrel 4710  (class class class)co 5874   sSet csts 13162
This theorem is referenced by:  setsabs  13191  setsnid  13204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-sets 13170
  Copyright terms: Public domain W3C validator