MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsval Unicode version

Theorem setsval 13188
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsval  |-  ( ( S  e.  V  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  B >. } ) )

Proof of Theorem setsval
StepHypRef Expression
1 opex 4253 . . 3  |-  <. A ,  B >.  e.  _V
2 setsvalg 13187 . . 3  |-  ( ( S  e.  V  /\  <. A ,  B >.  e. 
_V )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } ) )
31, 2mpan2 652 . 2  |-  ( S  e.  V  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } ) )
4 dmsnopg 5160 . . . . 5  |-  ( B  e.  W  ->  dom  {
<. A ,  B >. }  =  { A }
)
54difeq2d 3307 . . . 4  |-  ( B  e.  W  ->  ( _V  \  dom  { <. A ,  B >. } )  =  ( _V  \  { A } ) )
65reseq2d 4971 . . 3  |-  ( B  e.  W  ->  ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
76uneq1d 3341 . 2  |-  ( B  e.  W  ->  (
( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } )  =  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } ) )
83, 7sylan9eq 2348 1  |-  ( ( S  e.  V  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  B >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    u. cun 3163   {csn 3653   <.cop 3656   dom cdm 4705    |` cres 4707  (class class class)co 5874   sSet csts 13162
This theorem is referenced by:  setsabs  13191  setscom  13192  setsid  13203
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-sets 13170
  Copyright terms: Public domain W3C validator