MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsvalg Structured version   Unicode version

Theorem setsvalg 13492
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )

Proof of Theorem setsvalg
Dummy variables  e 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2964 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 2964 . 2  |-  ( A  e.  W  ->  A  e.  _V )
3 resexg 5185 . . . . 5  |-  ( S  e.  _V  ->  ( S  |`  ( _V  \  dom  { A } ) )  e.  _V )
43adantr 452 . . . 4  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( S  |`  ( _V  \  dom  { A } ) )  e. 
_V )
5 snex 4405 . . . 4  |-  { A }  e.  _V
6 unexg 4710 . . . 4  |-  ( ( ( S  |`  ( _V  \  dom  { A } ) )  e. 
_V  /\  { A }  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
74, 5, 6sylancl 644 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( ( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )
8 simpl 444 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  s  =  S )
9 simpr 448 . . . . . . . . 9  |-  ( ( s  =  S  /\  e  =  A )  ->  e  =  A )
109sneqd 3827 . . . . . . . 8  |-  ( ( s  =  S  /\  e  =  A )  ->  { e }  =  { A } )
1110dmeqd 5072 . . . . . . 7  |-  ( ( s  =  S  /\  e  =  A )  ->  dom  { e }  =  dom  { A } )
1211difeq2d 3465 . . . . . 6  |-  ( ( s  =  S  /\  e  =  A )  ->  ( _V  \  dom  { e } )  =  ( _V  \  dom  { A } ) )
138, 12reseq12d 5147 . . . . 5  |-  ( ( s  =  S  /\  e  =  A )  ->  ( s  |`  ( _V  \  dom  { e } ) )  =  ( S  |`  ( _V  \  dom  { A } ) ) )
1413, 10uneq12d 3502 . . . 4  |-  ( ( s  =  S  /\  e  =  A )  ->  ( ( s  |`  ( _V  \  dom  {
e } ) )  u.  { e } )  =  ( ( S  |`  ( _V  \  dom  { A }
) )  u.  { A } ) )
15 df-sets 13475 . . . 4  |- sSet  =  ( s  e.  _V , 
e  e.  _V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u. 
{ e } ) )
1614, 15ovmpt2ga 6203 . . 3  |-  ( ( S  e.  _V  /\  A  e.  _V  /\  (
( S  |`  ( _V  \  dom  { A } ) )  u. 
{ A } )  e.  _V )  -> 
( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
177, 16mpd3an3 1280 . 2  |-  ( ( S  e.  _V  /\  A  e.  _V )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
181, 2, 17syl2an 464 1  |-  ( ( S  e.  V  /\  A  e.  W )  ->  ( S sSet  A )  =  ( ( S  |`  ( _V  \  dom  { A } ) )  u.  { A }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2956    \ cdif 3317    u. cun 3318   {csn 3814   dom cdm 4878    |` cres 4880  (class class class)co 6081   sSet csts 13467
This theorem is referenced by:  setsval  13493  wunsets  13494  setsres  13495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-res 4890  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-sets 13475
  Copyright terms: Public domain W3C validator