HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sheli Unicode version

Theorem sheli 21793
Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shssi.1  |-  H  e.  SH
Assertion
Ref Expression
sheli  |-  ( A  e.  H  ->  A  e.  ~H )

Proof of Theorem sheli
StepHypRef Expression
1 shssi.1 . . 3  |-  H  e.  SH
21shssii 21792 . 2  |-  H  C_  ~H
32sseli 3176 1  |-  ( A  e.  H  ->  A  e.  ~H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   ~Hchil 21499   SHcsh 21508
This theorem is referenced by:  norm1exi  21829  hhssabloi  21839  hhssnv  21841  shscli  21896  shunssi  21947  shmodsi  21968  omlsii  21982  5oalem1  22233  5oalem2  22234  5oalem3  22235  5oalem5  22237  imaelshi  22638  pjimai  22756  shatomici  22938  shatomistici  22941  cdjreui  23012  cdj1i  23013  cdj3lem1  23014  cdj3lem2b  23017  cdj3lem3  23018  cdj3lem3b  23020  cdj3i  23021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-sh 21786
  Copyright terms: Public domain W3C validator